Department of Physics, IIT Patna

EP302 - Quantum Mechanics II
(Instructor: Sandeep Aashish)

Spring 2024
March 26, 2024

Assignment 1

*Due on Fri 5/4/2024.

1. Consider a position vector $\vec{r}=x \hat{x}+y \hat{y}+z \hat{z}$. Re-write this vector in a new "spherical basis" given by the complex unit vectors:

$$
\hat{e}_{1}=-\frac{\hat{x}+i \hat{y}}{\sqrt{2}} ; \quad \hat{e}_{0}=\hat{z} ; \quad \hat{e}_{-1}=\frac{\hat{x}-i \hat{y}}{\sqrt{2}}
$$

2. (a) Derive the generators of infinitesimal rotations about x - and y - axis, similar to that about z -axis.
(b) From the above, obtain the matrix representation in 3D for both operators and generators.
(c) Verify explicitly the group algebra of the generators of rotation about (i) y- and zaxes; (ii) z - and x -axes.
(d) Using the matrix representations, show that $\left[L_{z}, L^{2}\right]=0$.
3. Derive the transition amplitude for the stimulated emission, following the derivation of the transition rate for absorption using the semi-classical theory of radiation-matter interaction.
4. Assume that in the Einstein coefficient derivation, the number density (N_{b} / N_{0}) follows Bose-Einstein distribution instead of the Maxwell distribution. How will the results change?
