Course Number	EP302
Course credit (L-T-P-C)	3-1-0-8
Course title	Quantum Mechanics - II
Learning mode	Offline
Course content	 WKB Approximation, Bohr-Sommerfeld quantization condition; Time dependent perturbation theory, interaction picture; Constant and harmonic perturbations Fermi's Golden rule; Scattering theory: Laboratory and centre of mass frames, differential and total scattering cross-sections, scattering amplitude; Born approximation, Greens functions, scattering for different kinds of potentials; Partial wave analysis; Special topics in radiation theory: semi-classical treatment of interaction of radiation with matter, Einstein's coefficients, spontaneous and stimulated emission and absorption, application to lasers; Symmetries in quantum mechanics: Conservation laws and degeneracy associated with symmetries; Continuous symmetries, space and time translations, rotations; Rotation group, Wigner-Eckart theorem; Discrete symmetries; parity and time reversal.
	Relativistic quantum mechanics, Klein-Gordon equation, Interpretation of negative energy states and concept of antiparticles; Dirac equation, covariant form, adjoint equation; Plane wave solution and momentum space, spinors; Spin and magnetic moment of the electron.
Pre-requisites	Quantum Mechanics I
Assessment method	Assignments (A), MidSem (MS), EndSem (ES). • Internal (A)=20%, MS=30%, ES=50%
Textbooks	 I will be following the these textbooks for this course: R. Shankar, Principles of Quantum Mechanics, Springer (India), 2008. J. J. Sakurai, Modern Quantum Mechanics, Pearson Education, 2002. J. J. Sakurai, Advanced Quantum Mechanics, Pearson Education, 2007.

TENTATIVE COURSE PLAN

Lecture topics	Hours required	Week	remarks
Course introduction	1	3	
WKB approximation	3*	3	Extra class – Fri 19/1 @ 10AM
Bohr-Sommerfeld quantization condition	1	3	
Tutorial 1: problem solving	2	4	
Time dependent perturbation theory	2	4	
Periodic perturbation and Fermi's golden rule	2	5	
Interaction picture	2	5	
Scattering theory	3	6	
Born approximation, Green's function	2	6	1h more due to Timetable adjustment 10/2
Partial wave analysis	2	7	
Overview of radiation theory: semiclassical treatment of radiation-matter interaction	2	7	Lecture rescheduling: Fri->Thu 15/2
Tutorial 2: Examples of scattering with various potentials: doubt clearance for midsem	2	8	Midsem for the rest of week
Emission, absorption and lasers	2	9	
Einstein's coefficients	1	10	Lecture rescheduling (tentative): Tue->Mon 4/3; on leave for the rest of the week
Introduction to symmetries in physics	2	11	
Symmetries in QM: conservation laws	1	11	
Degeneracy associated with symmetries	1	11	
Continuous symmetries	2	12	
Tutorial 3	2*	12	1h Extra class on Wed 20/3
Rotation group	1	12	
Wigner-Eckart theorem	3	13&14	Only 2h due to TT adjustment
Discrete symmetries – parity and time reversal	2	14	
Introduction to relativistic quantum mechanics	1	14	1h extra due to TT adjustment on 6/4
Klein-Gordon equation	2	15	
Second quantization, negative energy states and antiparticles	2	15	
Dirac equation and spinors	4	16	
Spin and magnetic moment of the electron	2	17	
Tutorial 4: problems discussions for endsem	2	17	
TOTAL HOURS	54		

Important points to note about this course:

- Recurring lecture rescheduling: Wed -> Fri (i.e. 2 hours on Fri instead of Wed 1h); We will have Mon-1h, Tue-1h, F-2h
- There are 15 weeks (60 hours) in this semester, which is one extra week than a standard semester. Since we are starting late, we have around 14 weeks for this course (56 hours). However, we plan to cover the syllabus in 54 hours.
- I will take leave for a week in the first week of March. Therefore, two extra lectures have been arranged to compensate as per the schedule planned above. We may arrange 2 more hours of compensatory lecture/tutorial if necessary.
- Depending on the progress in lectures, we will try to have a tutorial (doubt clearance session) atleast once in two/three weeks, where you are expected to come prepared and ask me questions/doubts.
- You may expect an assignment roughly once in two/three weeks (not more than six in total).
- No quizzes!

Additional resources:

- Mathematica computational package commonly used to perform symbolic and numerical computation in cosmology and other fields.
- Maple an alternative to Mathematica (I don't use it often)
- arXiv.org Useful opensource archive where thousands of new and revised research papers are uploaded everday in almost every branch of physics, including GR and cosmology (gr-qc, hep-th, astro-ph).
- Inspirehep.net Online archive exclusively for high energy physics community. All papers on arXiv are also available on inspirehep.net, along with citation, references, and author profiles.
 - \circ $\;$ Great for tracking researchers and their work.