22
[——— ==

Lorentz invariance and second quantization

where the subscript 0 indicates this is a free field. The factor of /2wy, is included for later
convenience.

This equation looks just like the classical free-particle solutions, Eq. (2.59), to Maxwell’s
equations (ignoring polarizations) but instead of a, and a;‘, being functions, they are now
the annihilation and creation operators for that mode. Sometimes we say the classical ap, is
c-number valued and the quantum one is g-number valued. The connection with Eq. (2.59)
is only suggestive. The quantum equation, Eq. (2.75), should be taken as the definition of
a field operator ¢ (Z) constructed from the creation and annihilation operators a, and a;.

To get a sense of what the operator ¢ does, we can act with it on the vacuum and project
out a momentum component:
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This is the same thing as the projection of a position state on a momentum state in one-
particle quantum mechanics:

(p|Z) = e "%, (2.77)
So, ¢o(Z)|0) = |Z), that is, ¢o(Z) creates a particle at pos1t1on Z. This should not be sur-
prising, since ¢o(z) in Eq. (2.75) is very similar to 2 = a + a' in the simple harmonic
oscillator. Since ¢ is Hermitian, (Z| = (0|¢o(Z) as well.

By the way, there are many states |1) in the Fock space that satisfy (p]i) = e~ *PZ. Since
(p] only has non-zero matrix elements with one-particle states, adding to |z) a two- or zero-
particle state, as in ¢Z (Z) |0), has no effect on (p|). That is, [1)) = (¢ (Z) + $3(2))|0)
also satisfies (p]p) = e =P, The state |Z) = ¢o(£)|0) is the unique one-particle state with

(pl) = e 7%,

2.3.2 Time dependence

In quantum field theory, we generally work in the Heisenberg picture, where all the time
dependence is in operators such as ¢ and a,. For free fields, the creation and annihilation
operators for each momentum 7 in the quantum field are just those of a simple harmonic
oscillator. These operators should satisfy Eq. (2.55), a,(t) = e‘iwvtap, and its conjugate
al(t) = e*r'al, where a, and al, (without an argument) are time independent. Then, we
can define a quantum scalar field as

— dd 1 —ipT t Jipx
bo(F,1) = ( — (ape P¥ + ae’? ), (2.78)
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with p* = (wp, 7)) and w, = || as in Eq. (2.60). The 0 subscript still indicates that these
are free fields.



2.3 Second quantization

——

To be clear, there is no physical content in Eq. (2.78). It is just a definition. The physical
content is in the algebra of a;, and a; and in the Hamiltonian Ho. Nevertheless, we will
see that collections of a, and a;f, in the form of Eq. (2.78) are very useful in quantum field
theory. For example, you may note that while the integral is over only three components
of pu- the phases have combined into a manifestly I orentz-invariant form. This field now
automatically satisfies O¢(x) = 0. If a scalar field had mass m, we could still write it in
exactly the same way but with a massive dispersion relation: wp = /P° -+ m?2. Then the
quantum field still satisfies the classical equation of motion: (O + m?)p(x) = 0.

Let us check that our free Hamiltonian is consistent with the expectation for time
evolution. Commuting the free fields with Hy we find
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which is exactly the expected result.
For any Hamiltonian, quantum fields satisfy the Heisenberg equations of motion:

i0,¢(z) = ¢, H]. (2.80)

In a free theory, H = Hj, and this is consistent with Eq. (2.78). In an interacting theory,
that is, one whose Hamiltonian H differs from the free Hamiltonian Hy, the Heisenberg
equations of motion are still satisfied, but we will rarely be able to solve them exactly. To
study interacting theories, it is often useful to use the same notation for interacting fields
as for free fields:

dp 1
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At any fixed time, the full interacting creation and annihilation operators a};(t) and a,(t)
satisfy the same algebra as in the free theory — the Fock space is the same at every time, due
to time-translation invariance. We can therefore define the exact creation operators a,(t)
to be equal to the free creation operators a, at any given fixed time, a,(#9) = a, and so

o(,1)

ap(t)e™ P 4 ol (t)eP”] . (2.81)
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&(Z,to) = ¢do(Z, to). However, the operators that create particular momentuim states |p) in
the interacting theory mix with each other as time evolves. We generally will not be able to
solve the dynamics of an interacting theory exactly. Instead, we will expand H = Hy+H,p;
and calculate amplitudes using time-dependent perturbation theory with Hj,, just as in
quantum mechanics. In Chapter 7, we use this approach to derive the Feynman rules.

The first-quantized (quantum mechanics) limit of the second-quantized theory (quantum
field theory) comes from restricting to the one-particle states, which is appropriate in the
non-relativistic limit. A basis of these states is given by the vectors (z| = (&, ¢|:

(| = (0] 6, 1) (2.82)
Then, a Schrodinger picture wavefunction is

Y(z) = (x|}, (2.83)
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which satisfies

W0ip(z) = 10, (016(Z, t)|h) = 1 (0]0:$(Z, 1)[+) - (2.84)

In the massive case, the free quantum field ¢ (z) satisfies 2¢y = (62 — mQ) $o and we

have from Eq. (2.79) (with the massive dispersion relation w, = VPE+m?2):
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= (0]\/m? — V2¢o(x)|2) - (2.85)

So,
=2
10 (x) = \ym? — V2iy(z) = (m - Z—n +0 (%)) W(z). (2.86)

The final form is the low-energy (large-mass) expansion. We can then define the non-
relativistic Hamiltonian by subtracting off the mc? contribution to the energy, which is
irrelevant in the non-relativistic limit. This gives

—
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i0(z) = —5—i(a), (2.87)

which is the non-relativistic Schrodinger equation for a free theory. Another way to derive
the quantum mechanics limit of quantum field theory is discussed in Section 33.6.2.

2.3.3 Commutation relations

We will occasionally need to use the equal-time commutation relations of the second-
quantized field and its time derivative. The commutator of a field at two different points is
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Using Eq. (2.69), [ax, al] = (2m)36%(5 — k), this becomes

[(), ¢(v)] = / (d3 / ;i) —2‘*;2% [ £, —iqy _ e—iﬁﬁ:‘eicﬁ] (2m)? (5 - @)
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Since the integral measure and w,, = /p’? + m? are symmetric under ¥ — —p we can flip
the sign on the exponent of one of the terms to see that the commutator vanishes:
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[6(2), #(7)] = 0. (2.90)

The equivalent calculation at different times is much more subtle (we discuss the general
result in Section 12.6 in the context of the spin-statistics theorem).
Next, we note that the time derivative of the free field, at ¢t = 0, has the form

m(z) = 8t¢($)‘z:o = —1 (;17;)) % (ape’™ — ale "), (2.91)

where 7 is the operator canonically conjugate to ¢. As ¢(Z) is the second-quantized analog

of the & operator, w(&) is the analog of the p operator. Note that 7(Z) has nothing to do

with the physical momentum of states in the Hilbert space: 7(Z) |0) is not a state of given

momentum. Instead, it is a state also at position Z created by the time derivative of ¢ ().
Now we compute
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Both of these integrals give §°(Z — %), so we find

[¢(F). m(7)] = i6° (& — ). (2.93)

which is the analog of [£,] = i in quantum mechanics. It encapsulates the field theory
version of the uncertainty principle: you cannot know the properties of the field and its rate
of change at the same place at the same time.

In a general interacting theory, at any fixed time, ¢(2) and 7(&) have expressions in
terms of creation and annihilation operators whose algebra is identical to that of the free
theory. Therefore, they satisfy the commutation relations in Egs. (2.90) and (2.93) as well
as [w(&), 7(¢)] = 0. The Hamiltonian in an interacting theory should be expressed as a
functional of the operators ¢(Z) and 7(Z) with time evolution given by 9,0 = i[H, O].
Any such Hamiltonian can then be expressed entirely in terms of creation and annihilation
operators using Eqgs. (2.75) and (2.91); thus it has a well-defined action on the associated
Fock space. Conversely, it is sometimes more convenient (especially for non-relativistic or
condensed matter applications) to derive the form of the Hamiltonian in terms of a, and
aT We can then eXpIEsS ap and a in terms of ¢(Z) and 7 (Z) by inverting Egs. (2.75) and
(2 91) for a, and ap (the solution is the field theory equivalent of Eq. (2.47)).

In summary, all we have done to quantize the electromagnetic field is to treat it as an
infinite set of simple harmonic oscillators, one for each wavenumber j. More generally:

Quantum field theory is just quantum mechanics with an infinite number of harmonic
oscillators.



