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These are block diagonal. These are the same generators we used for the (3,0) ang
(0, ) representations above. This makes it clear that the Dirac representation of the
Lorentz group is reducible; it is the direct sum of a left-handed and a right-handed spinoy
representation.

Another representation 1s the Majorana representation:

0 _ 0 0’2 1 _ 'Z.O-S 0 2 = 0 —0'2 h3_ *’L'Jl 0
"7z 0)07T T o W) T\ 0 )T T o0 i)

(10.74)

In this basis the y-matrices are purely imaginary. The Majorana is another (5,0) @ (0, %)
representation of the Lorentz group that is physically equivalent to the Weyl representation.

The Weyl spinors, 1, and ¢ g, are in a way more fundamental than Dirac spinors such
as 1) because they correspond to irreducible representations of the Lorentz group. But the
electron is a Dirac spinor. More importantly, QED is symmetric under L. < R. Thus,
for QED the y-matrices make calculations a lot easier than separating out the vy, and
g components. In fact, we will develop such efficient machinery for manipulating the
~-matrices that even in theories which are not symmetric to L «» R, such as the theory
of weak interactions (Chapter 29), it will be convenient to embed the Weyl spinors into
Dirac spinors and add projectors to remove the unphysical components. These projections
are discussed in Section 11.1.

10.3.1 Lorentz transformation properties

When using Dirac matrices and spinors, we often suppress spinor indices but leave vector
indices explicit. So an equation such as {v#,v"} = 2¢*¥ really means

Vo Vop T Yoy Vog = 20"6°7, (10.75)
and the equation S#¥ = [y, v"]| means
IZ: v
St = 2 (1l — V¥l (10.76)
For an expression such as
1
V2=V, g"V, = 5 Vi (v, 4"}V, (10.77)

to be invariant, the Lorentz transformations in the vector and Dirac representations must
be related. Indeed, since 1y*1 transforms like a 4-vector we can deduce that

AT A, = (Av)*yY, (10.78)

where the Ay are the Lorentz transformations acting on spinor indices and Ay are the
Lorentz transformations in the vector representation. Writing out the matrix indices fyff’g
this means

(A Dsaris(As)py = (Av)* v, (10.79)



10.3 Dirac Matrices
/
pere /4 refers to which y-matrix, and & and 3 index the elements of that matrix. You can
“Leck this with the explicit forms for Ay and A, in Eqs. (10.70) and (10.71) above.
i ,

1t is useful to study the properties of the Lorentz gencrators from the Dirac algebra itself,
without needing to choose a particular basis for the y*, First note that

(.Y =20"" = (O)?=1, ()’=-1 (10.80)

go the eigenvalues of 40 are 41 and the eigenvalues of ~v* are 4-7. Thus, if we diagonalize
0 we will see that it is Hermitian, and if we diagonalize v*, v* or v* we will see that they

Zre anti-Hermitian. This is true, in general, for any representation of the y-matrices:
~OF = 40, Ap——— (10.81)
Then,
: t . .
() = (Ll 1) = == [t et] = 2 et T, (10.82)
4 4 4
which implies
gt = gid  goit — g0t (10.83)

Again, we see that the rotations are unitary and the boosts are not. You can see this from
the explicit representations in Eq (10.73). But because we showed it algebraically, using
only the defining equation {v*,7"} = 2¢*¥, it is true in any representation of the Dirac

algebra.
Now, observe that one of the Dirac matrices is Hermitian, v°. Moreover,

so y#t = y04#40 Then

@

) ,l’ v IL
P05 40 = A0~ [y 1] 40 = 2 [09#140, 4094 140] = <yt 0] = 5,

T 4 ~ 1
(10.85)
and so
(’yOAS';/O)Jr = 0 exp(i0,, 5" )10 = exp(—i0,,,7° 5" T4°) = exp(—i0,,S*) = A .
(10.86)
Then, finally,
PI0% — (WTADY (M) = (TN M) = 9Ty, (10.87)

which is Lorentz invariant.

We have just been re-deriving from the Dirac algebra point of view what we found by
hand from the Weyl point of view. We have seen that the natural conjugate for ¢ out of
which real Lorentz-invariant expressions are constructed is not 97 but

¥ = 140, (10.88)

The point is that ¢ transforms according to A 1. Thus ¥ is Lorentz invariant. In contrast,
¥4 is not Lorentz invariant, since Ty — (TAD)(As9). For this to be invariant, we
Would need Al = A, that is, for the representation of the Lorentz group to be unitary.
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But the finite-dimensional spinor representation of the Lorentz group, like the 4-vector
representation, is not unitary, because the boost generators are anti-Hermitian. As with
vectors, for unitary representations we will need fields () that transform in infinite.
dimensional representations of the Poincaré group.

We can also construct objects such as

'(p:"/uw; ¢7u7u¢a "/)a;ﬂ/); (10-89)
all transform like tensors under the Lorentz group. Also
L = P(iy* 0, — m) : (10.90)

is Lorentz invariant. We abbreviate this with
L =g — m)y, (10.91)

which is the Dirac Lagrangian.
The Dirac equation follows from this Lagrangian by the equations of motion:

(i@ —m)y = 0. (10.92)
To be explicilt, this is shorthand for
('i’ygﬁa# —mbag)ts = 0. (10.93)

After multiplying the Dirac equation by (2(? + m) we find
. . 1 v 1 v
0= @0+ )8 my = (~30,0,0"7") OBl ] -2 )
— (0% + mP)p. (10.94)

So 9 satisfies the Klein—-Gordon equation:

(O +m2)p =0, (10.95)

_ In Fourier space, this implies that on-shell spinor momenta satisfy the unique relativistic

dispersion relation p* = m?, just like scalars. Because spinors also satisfy an equation
linear in derivatives, people sometimes say the Dirac equation is the “square root” of the
Klein—Gordon equation.

We can integrate the Lagrangian by parts to derive the equations of motion for 1:

L = Pidhp —mipp = —i (0,9) ¥*9b — mapb. (10.96)
So,
— 40, 0v" — map = 0. (10.97)

This v* on the opposite side from J,, is a little annoying, so we often write
_ —

where the derivative acts to the left. This makes the conjugate equation look more like the
original Dirac equation.



