CS365: Deep Learning

Arijit Mondal

Dept. of Computer Science & Engineering Indian Institute of Technology Patna arijit@iitp.ac.in

General Information

• Instructors

- Arijit Mondal
- Teaching assistants
 - Jyoti Kumari
 - Sandeep Kumar Patel

• Course webpage: www.iitp.ac.in/~arijit/, then follow Teaching

Course structure

- Introduction to big data problem & representation learning
- Overview of linear algebra and probability
- Basics of feature engineering
- Neural network
- Introduction to open-source tools
- Deep learning network
- Regularization
- Optimization
- Advanced topics
- Practical applications

Evaluation policy

- Two quizzes/projects 20%
- Midsem 30%
- Endsem 50%

Books

- Ian Goodfellow, Yoshua Bengio and Aaron Courville, "Deep Learning", Book in preparation for MIT Press, 2016. (available online)
- Jerome H. Friedman, Robert Tibshirani, and Trevor Hastie, "The elements of statistical learning", Springer Series in Statistics, 2009.
- Charu C Aggarwal, "Neural Networks and Deep Learning", Springer.
- Aston Zhang, Zachary C. Lipton, Mu Li, Alexander J. Smola, "Dive into Deep Learning" (avilable online)
- Iddo Drori, "The Science of Deep Learning", Cambridge University Press
- Simon O. Haykin, "Neural Networks and Learning Machines", Pearson Education India
- Richard S. Sutton, Andrew G. Barto, "Reinforcement Learning: An Introduction", MIT Press

Introduction

Problem space

- Problems a matter or situation regarded as unwelcome or harmful and needing to be dealt with and overcome
- Target is to solve the same on a computer

Problem space

- Problems a matter or situation regarded as unwelcome or harmful and needing to be dealt with and overcome
- Target is to solve the same on a computer
- Problems can be intellectually challenging for human being but relatively straight forward for a computer
 - Travelling salesman problem, chess
- Problems can be easy for common people but difficult for computer (even expressing it in a formal way)
 - Identifying an object, car (say), in a picture

Problem space

- Problems a matter or situation regarded as unwelcome or harmful and needing to be dealt with and overcome
- Target is to solve the same on a computer
- Problems can be intellectually challenging for human being but relatively straight forward for a computer
 - Travelling salesman problem, chess
- Problems can be easy for common people but difficult for computer (even expressing it in a formal way)
 - Identifying an object, car (say), in a picture
- Primary focus will be in the second category problems

Problem Solving Strategies for Big Data

- \bullet Need to solve problems efficiently and accurately when the input data is huge (\sim GB, TB order)
- Finding a deterministic algorithm is difficult
 - Need to find out features
 - Requires significant effort for model building
 - Need to have domain knowledge
- Statistical inference is found to be suitable
 - Feature selection is not crucial
 - Model will learn from past data

Applications: Computer vision

- 2d to 3d conversion
- Street view generation
- Image classifications
- Image segmentation

Applications: Activity Recognition

• Recognize activities like walking, running, cooking, etc. from still image or video data

Applications: Image Captioning

• Automated caption generation for a given image

A person riding a motorcycle on a dirt road.

Two dogs play in the grass.

Somewhat related to the image

A skateboarder does a trick on a ramp.

Uprelated to the image

A dog is jumping to catch a frisbee.

A group of young people playing a game of frisbee.

Two hockey players are fighting over the puck.

A little girl in a pink hat is blowing bubbles.

A herd of elephants walking across a dry grass field.

A close up of a cat laying on a couch.

A red motorcycle parked on the side of the road.

A refrigerator filled with lots of food and drinks.

A yellow school bus parked in a parking lot.

Applications: Object Identification

• Identify objects in still image or in video stream

Applications: Automated Car

• Self driving car

Applications: Drones & Robots

• Managing movement of robot or drones

Applications: Natural Language Processing

- Recommender system
- Sentiment analysis
- Question answering
- Information extraction from website
- Automated email reply

Applications: Speech processing

- Conversion of speech into text
- Generation of particular voice for a given text

Other possible applications

- Language translation
- Weather prediction
- Genomics
- Drug discovery
- Particle physics
- Surveillance
- Cryptography and many more.

Traditional Programming vs ML/DL

AI Hierarchy

Issue of Representation

- Representation of data in an efficient/structured manner is crucial for solving problems more effectively
 - Searching of a set of elements in a given list (sorted/unsorted)
 - Arithmetic operations on Arabic and Roman numerals
 - Primality test of n when n is represented as 11111...111 (n-number of one)
- Structured representation can help in predicting future values

Choice of Representation

х

Learning representation/feature

- Traditional approaches
 - Pattern recognition
 - Input, output of the problem
- End to end learning
 - System automatically learns internal representation

AI-ML Tasks

- Heavily depends on features
- Requires good domain knowledge
- Feature extraction is not easy job
 - Identify a car
 - How to describe wheel
 - Shadow/brightness
 - Obscuring element

Representation Learning

- Learned representation often result in better performance compared to hand design
- Allows the system to rapidly adapt to new task
- Need to discover a good set of features
- Manual design of features is nearly impossible

Design of Features

- Goal is to separate out variation factors
- These factors are separate sources of influence
- It may exist as unobserved object or unobserved forces that affect observable quantity
 - Speech Factors are age, sex, accent, etc
 - Image Position, color, brightness, etc.

Deep Learning

- Try to address the problem of representation learning
 - Representation are expressed in terms of other simpler representation
 - Develop complex concept using simpler concept

Simple to Complex Features

27

Conventional Machine Learning

Deep Learning Model

- Feed-forward deep network or multilayer perceptron
- Mathematical functions that map input to output
- Composed of simpler functions
- Each layer provides a new representation
- Learning right representation

Representation learning

History

- Has many names and view point
 - Cybernetics (1940-1960)
 - Connectionism (1980-1990) (neural net)
 - Deep learning (2006+)
- More useful as the amount of data is increased
- Models have grown in size as increase in computing resources
- Solving complex problem with increasing accuracy

History of basic model

- The first learning machine: the Perceptron
 - Built at Cornell, 1960
- Perceptron was linear classifier on top of simple feature extractor
- Most of the practical applications of ML today use glorified linear classifiers or glorified template matching.
- Significant effort is required for identifying relevant features
- Typically it will solve $y = sign\left(\sum_{i=1}^{N} (w_i \times f_i(X) + b)\right)$

Broad Categories of Problem

• Regression

• Classification

Regression

• Regression (Non-linear)

Deep Learning

Classification

• Non-linear

Artificial Neural Network

• A simple model

Example NN: XOR gate

Example NN: XOR gate

Example NN: XOR gate

Distributed representation

- Each input should be represented by many features
- Each feature should be involved in the representation of many possible inputs
- Example: car, flower, birds red, green, blue
 - 9 neurons
 - For each combination of color and object
- Distributed neurons
 - 3 Neurons for color
 - 3 Neurons for object
 - Total 6 neurons

Popularization of Neural Network

- Most of the theory of neural network was developed in the 1980s
- Started gaining popularity around 2012
 - Geoffrey Hinton and Alex Krizhevsky winning the ImageNet competition where they beat the nearest competitor by a huge margin (2012)

Popularity

- Increase data size
 - Computing resources are available
 - Accepting performance 5000 labeled example per category
 - 10 million for human performance
- Increasing model size
- Increasing accuracy, complexity, real world impact
- Used by many companies
 - Google, Microsoft, Facebook, IBM, Baidu, Apple, Adobe, Nvidia, NEC, etc.
- Availability of good commercial & open-source tools
 - Theano, Torch, DistBelief, Caffe, TensorFlow, Keras, etc.

DL Trend

Search trend in Google

AI/DL in Google

Artificial Intelligence is the New Electricity - Andrew Ng

Artificial Intelligence is the New Electricity - Andrew Ng

Thank you!