CS365: Deep Learning

Neural Networks

Ariiit Mondal

Dept. of Computer Science & Engineering Indian Institute of Technology Patna arijit@iitp.ac.in

Deep Learning

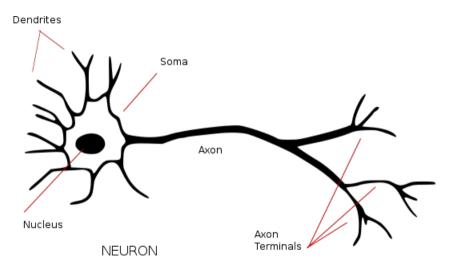
Human brain vs von Neumann computer Massive parallelism

- Distributed representation and computation
- Learning ability
- Generalization ability
- Adaptability
- Adaptability
 - Inherent contextual information processing
- Fault tolerance
- Low energy consumption

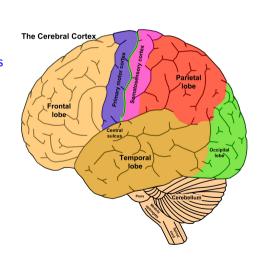
Computer vs Brain

	von Neumann	Neural system
Processor	Complex, high speed, one or a few	Simple, low speed, a large number
Memory	Separate from processor, Local- ized, Noncontent addressable	Integrated into processor, Dis- tributed, Content addressable
Computing	Centralized, sequential, stored program	Distributed, parallel, self-learning
Reliability	Very vulnerable	Robust
Expertise	Numeric and symbolic manipulations	Perceptual problems
Operating envi- ronment	Well defined, well constrained	Poorly defined, unconstrained

Biological Neuron

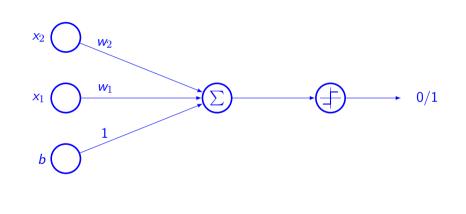


- It is a flat sheet of neurons about 2-3 millimeter thick with surface area is 2200 cm²
 - Twice the area of computer keyboard
- It contains around 10^{11} neurons
 - Number of stars in the Milky-way
- Each neuron is connected to 10^3 - 10^4 other neurons
- Total connections is around 10¹⁴-10¹⁵
- Connectionist model



Neuron

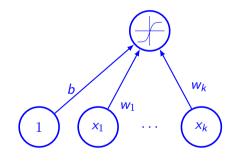
One of the primitive models



Deep Learning

Artificial Neuron

- Neuron pre-activation function
 - $a(x) = \sum w_i x_i + b = b + w^T x$
- Neuron output activation function
 - $h(x) = g(a(x)) = g\left(\sum_{i} w_i x_i + b\right)$
- Notations
 - w Weight vector
 - *b* Neuron bias
 - g(.) Activation function



Single hidden layer neural network

Hidden layer pre-activation

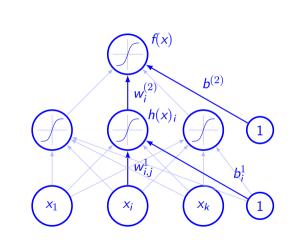
$$a(x) = b^1 + w^1 x$$

Hidden layer activation

$$h(x) = g(a(x))$$

Output layer activation

$$f(x) = o(b^{(2)} + w^{(2)T}h^{1}(x))$$



$$k > 0 \ (h^{(0)}(x) = x)$$

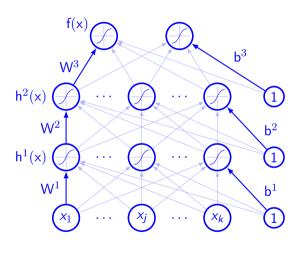
$$a^{(k)}(x) = b^{(k)} + W^{(k)}h^{(k-1)}x$$

Hidden layer activation

$$\mathsf{h}^{(k)}(\mathsf{x}) = \mathsf{g}(\mathsf{a}^{(k)}(\mathsf{x}))$$

 $h^{(k)}(x) =$ • Output layer activation

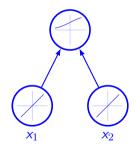
$$\mathsf{h}^{(L+1)}(\mathsf{x}) = o(\mathsf{a}^{(L+1)}(\mathsf{x})) = \mathsf{f}(\mathsf{x})$$

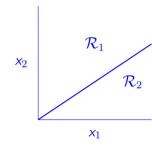


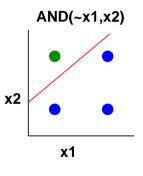
1

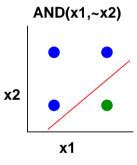
Classification using single neuron

- Single neuron can do binary classification
 - Also known as logistic regression classifier

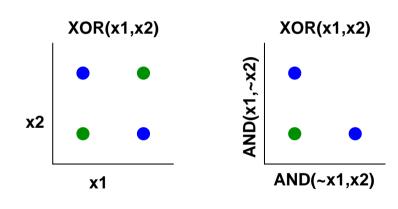








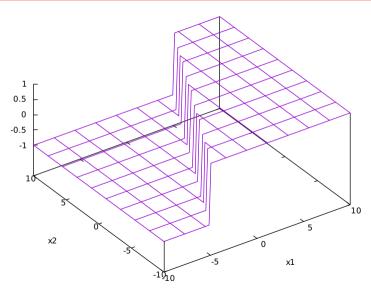
• There are issues for linear separation



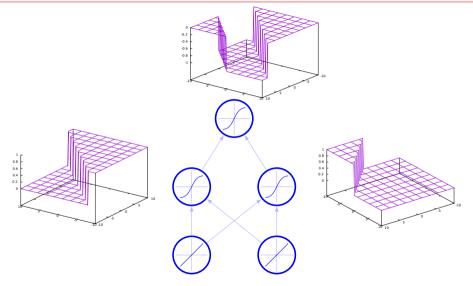
1

Deep Learning

Physical interpretation



Capacity of neural network

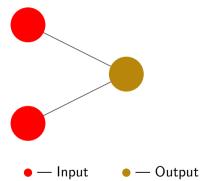


Deep Learning

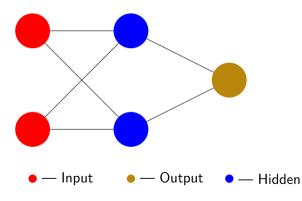
Capacity of neural network

- Universal approximation theorem (Hornik,1991)
 - A single hidden layer neural network with a linear output unit can approximate any continuous function arbitrarily well, given enough hidden units.
- The result is applicable for other hidden layer activation functions such as sigmoid, tanh, etc.
- This is a promising result, but it does not say that there is a learning algorithm to find the necessary parameter values!

Simplest form of neural network

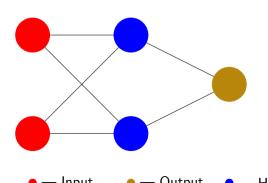


• With single hidden layer only



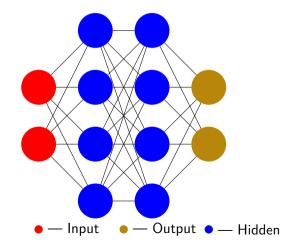
Radial Basis Function

- Typically it will have 3 layers
- Distance from a center vector is computed
- Radial basis function as activation $o = \sum_{i} a_{i} \exp(\beta(x-c)^{2})$
- Usage function approximation, time series prediction, classification, system control



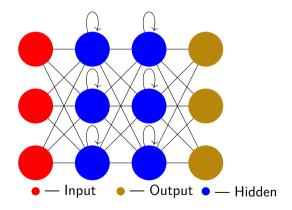
Deep Feed Forward

- Can have multiple hidden layers
- More complicated functions can be represented



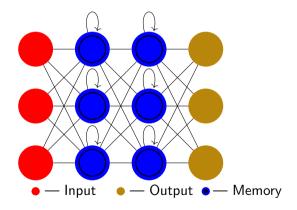
Recurrent Neural Network

- It has feedback loop
- Used for modelling dependencies such as temporal



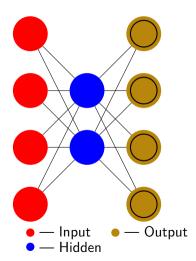
Long Short Term Memory

- Feedback loop with memory
- Application NLP, time series modeling

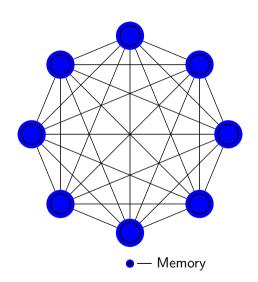


Auto Encoder

- Learning the data in unsupervised mode
- Dimensionality reduction

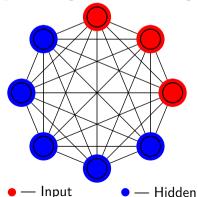


Markov chain



Boltzmann Machine

- Stochastic network
- Each neuron can have value either 0 or 1
- Some are hidden neurons
- Total energy (computed using states and the edge weights) is minimized



- The network must learn the connection weights from available training examples
- Learning can be
 - Supervised
 - Unsupervised
 - Hybrid
 - Four basic types of learning rule
 - Error correction rule
 - Boltzmann learning
 - Hebbian
 - Competitive learning

- Output is generated based on the weight values but this may vary from desired value
- The error information is used to update the weight value
- Perceptron learning algorithm
 - Initialize the weights and threshold to small random numbers
 - Present a pattern vector and evaluate the output of neuron
 - Update the weight according to $w_i(t+1) = w_i(t) + \eta(d-y)x_i$
 - Back propagation algorithm

- Usually symmetric recurrent network consisting of binary units
- A subset of neurons interact with environment
- Generally it has two modes
 - Clamped Visible neurons are clamped to specific states
 - Free-running Visible and hidden unit operate freely
- Stochastic learning rule derived from information theoretic and thermodynamic principles
- ullet Learning rule is given by $\Delta w_{ij} = \eta (ar{
 ho}_{ij}
 ho_{ij})$

Hebbian rule

- One of the oldest learning rules
- If neuron on both sides of a synapse are activated synchronously and repeatedly, the synapse's strength is selectively increased
- Mathematically, it can be described as $w_{ij}(t+1) = w_{ij}(t) + \eta y_j(t) x_i(t)$

- Output units compete among themselves for activation
- Only one output is active at time
- Also known as winner-take-all
- Mathematically, it can be represented as $w_{i*}x \ge w_{i}x$
- Competitive learning rule can be stated as

$$\Delta w_{ij} = \begin{cases} \eta(x_j^u - w_{i^*j}) & i = i^* \\ 0 & i \neq i^* \end{cases}$$

Summary

- \bullet Error correction rule Single or multilayer perceptron
 - Pattern classification, function approximation, prediction, control
- Boltzmann Recurrent
 - Pattern classification
- Hebbian Multilayer feed forward
- Pattern classification, data analysis
- Competitive
 - Within class categorization, data compression