
Deep Learning1

CS365: Deep Learning

Deep Feedforward Network

Arijit Mondal
Dept. of Computer Science & Engineering

Indian Institute of Technology Patna

arijit@iitp.ac.in

x1 . . . xj . . . xk 1

h1(x) 1

W1 b1

h2(x) 1

W2 b2

f(x)

W3
b3

De
ep

Le
ar
ni
ng

2

Multilayer neural network

De
ep

Le
ar
ni
ng

3

Deep feedforward networks
• Also known as feedforward neural network or multilayer perceptron

• Goal of such network is to approximate some function f ∗

• For classifier, x is mapped to category y ie. y = f ∗(x)
• A feedforward network maps y = f(x;θ) and learns θ for which the result is the best

function approximation
• Information flows from input to intermediate to output

• No feedback, directed acyclic graph
• For general model, it can have feedback and known as recurrent neural network

• Typically it represents composition of functions
• Three functions f (1), f (2), f (3) are connected in chain
• Overall function realized is f(x) = f (3)(f (2)(f (1)(x)))
• The number of layers provides the depth of the model

• Goal of NN is not to model brain accurately!

De
ep

Le
ar
ni
ng

3

Deep feedforward networks
• Also known as feedforward neural network or multilayer perceptron
• Goal of such network is to approximate some function f ∗

• For classifier, x is mapped to category y ie. y = f ∗(x)
• A feedforward network maps y = f(x;θ) and learns θ for which the result is the best

function approximation

• Information flows from input to intermediate to output
• No feedback, directed acyclic graph
• For general model, it can have feedback and known as recurrent neural network

• Typically it represents composition of functions
• Three functions f (1), f (2), f (3) are connected in chain
• Overall function realized is f(x) = f (3)(f (2)(f (1)(x)))
• The number of layers provides the depth of the model

• Goal of NN is not to model brain accurately!

De
ep

Le
ar
ni
ng

3

Deep feedforward networks
• Also known as feedforward neural network or multilayer perceptron
• Goal of such network is to approximate some function f ∗

• For classifier, x is mapped to category y ie. y = f ∗(x)
• A feedforward network maps y = f(x;θ) and learns θ for which the result is the best

function approximation
• Information flows from input to intermediate to output

• No feedback, directed acyclic graph
• For general model, it can have feedback and known as recurrent neural network

• Typically it represents composition of functions
• Three functions f (1), f (2), f (3) are connected in chain
• Overall function realized is f(x) = f (3)(f (2)(f (1)(x)))
• The number of layers provides the depth of the model

• Goal of NN is not to model brain accurately!

De
ep

Le
ar
ni
ng

3

Deep feedforward networks
• Also known as feedforward neural network or multilayer perceptron
• Goal of such network is to approximate some function f ∗

• For classifier, x is mapped to category y ie. y = f ∗(x)
• A feedforward network maps y = f(x;θ) and learns θ for which the result is the best

function approximation
• Information flows from input to intermediate to output

• No feedback, directed acyclic graph
• For general model, it can have feedback and known as recurrent neural network

• Typically it represents composition of functions
• Three functions f (1), f (2), f (3) are connected in chain
• Overall function realized is f(x) = f (3)(f (2)(f (1)(x)))
• The number of layers provides the depth of the model

• Goal of NN is not to model brain accurately!

De
ep

Le
ar
ni
ng

3

Deep feedforward networks
• Also known as feedforward neural network or multilayer perceptron
• Goal of such network is to approximate some function f ∗

• For classifier, x is mapped to category y ie. y = f ∗(x)
• A feedforward network maps y = f(x;θ) and learns θ for which the result is the best

function approximation
• Information flows from input to intermediate to output

• No feedback, directed acyclic graph
• For general model, it can have feedback and known as recurrent neural network

• Typically it represents composition of functions
• Three functions f (1), f (2), f (3) are connected in chain
• Overall function realized is f(x) = f (3)(f (2)(f (1)(x)))
• The number of layers provides the depth of the model

• Goal of NN is not to model brain accurately!

De
ep

Le
ar
ni
ng

4

Issues with linear FFN
• Fit well for linear and logistic regression
• Convex optimization technique may be used
• Capacity of such function is limited
• Model cannot understand interaction between any two variables

De
ep

Le
ar
ni
ng

5

Overcome issues of linear FFN
• Transform x (input) into ϕ(x) where ϕ is nonlinear transformation

• How to choose ϕ?
• Use a very generic ϕ of high dimension

• Enough capacity but may result in poor generalization
• Very generic feature mapping usually based on principle of local smoothness
• Do not encode enough prior information

• Manually design ϕ

• Require domain knowledge
• Strategy of deep learning is to learn ϕ

De
ep

Le
ar
ni
ng

5

Overcome issues of linear FFN
• Transform x (input) into ϕ(x) where ϕ is nonlinear transformation
• How to choose ϕ?

• Use a very generic ϕ of high dimension
• Enough capacity but may result in poor generalization
• Very generic feature mapping usually based on principle of local smoothness
• Do not encode enough prior information

• Manually design ϕ

• Require domain knowledge
• Strategy of deep learning is to learn ϕ

De
ep

Le
ar
ni
ng

5

Overcome issues of linear FFN
• Transform x (input) into ϕ(x) where ϕ is nonlinear transformation
• How to choose ϕ?

• Use a very generic ϕ of high dimension
• Enough capacity but may result in poor generalization
• Very generic feature mapping usually based on principle of local smoothness
• Do not encode enough prior information

• Manually design ϕ

• Require domain knowledge
• Strategy of deep learning is to learn ϕ

De
ep

Le
ar
ni
ng

5

Overcome issues of linear FFN
• Transform x (input) into ϕ(x) where ϕ is nonlinear transformation
• How to choose ϕ?

• Use a very generic ϕ of high dimension
• Enough capacity but may result in poor generalization
• Very generic feature mapping usually based on principle of local smoothness
• Do not encode enough prior information

• Manually design ϕ

• Require domain knowledge

• Strategy of deep learning is to learn ϕ

De
ep

Le
ar
ni
ng

5

Overcome issues of linear FFN
• Transform x (input) into ϕ(x) where ϕ is nonlinear transformation
• How to choose ϕ?

• Use a very generic ϕ of high dimension
• Enough capacity but may result in poor generalization
• Very generic feature mapping usually based on principle of local smoothness
• Do not encode enough prior information

• Manually design ϕ

• Require domain knowledge
• Strategy of deep learning is to learn ϕ

De
ep

Le
ar
ni
ng

6

Goal of deep learning
• We have a model y = f(x;θ,w) = ϕ(x;θ)Tw
• We use θ to learn ϕ

• w and ϕ determines the output. ϕ defines the hidden layer
• It looses the convexity of the training problem but benefits a lot
• Representation is parameterized as ϕ(x,θ)

• θ can be determined by solving optimization problem
• Advantages

• ϕ can be very generic
• Human practitioner can encode their knowledge to designing ϕ(x;θ)

De
ep

Le
ar
ni
ng

7

Example
• Let us choose XOR function
• Target function is y = f ∗(x) and our model provides y = f(x;θ)
• Learning algorithm will choose the parameters θ to make f close to f ∗

• Target is to fit output for X = {[0, 0]T, [0, 1]T, [1, 0]T, [1, 1]T}
• This can be treated as regression problem and MSE error can be chosen as loss function

(J(θ) = 1

4

∑
x∈X

(f ∗(x)− f(x;θ))2)

• We need to choose f(x;θ) where θ depends on w and b
• Let us consider a linear model f(x;w, b) = xTw + b
• Solving these, we get w = 0 and b = 1

2

De
ep

Le
ar
ni
ng

7

Example
• Let us choose XOR function
• Target function is y = f ∗(x) and our model provides y = f(x;θ)
• Learning algorithm will choose the parameters θ to make f close to f ∗

• Target is to fit output for X = {[0, 0]T, [0, 1]T, [1, 0]T, [1, 1]T}
• This can be treated as regression problem and MSE error can be chosen as loss function

(J(θ) = 1

4

∑
x∈X

(f ∗(x)− f(x;θ))2)

• We need to choose f(x;θ) where θ depends on w and b
• Let us consider a linear model f(x;w, b) = xTw + b

• Solving these, we get w = 0 and b = 1
2

De
ep

Le
ar
ni
ng

7

Example
• Let us choose XOR function
• Target function is y = f ∗(x) and our model provides y = f(x;θ)
• Learning algorithm will choose the parameters θ to make f close to f ∗

• Target is to fit output for X = {[0, 0]T, [0, 1]T, [1, 0]T, [1, 1]T}
• This can be treated as regression problem and MSE error can be chosen as loss function

(J(θ) = 1

4

∑
x∈X

(f ∗(x)− f(x;θ))2)

• We need to choose f(x;θ) where θ depends on w and b
• Let us consider a linear model f(x;w, b) = xTw + b
• Solving these, we get w = 0 and b = 1

2

x1 x2

h1 h2

y

x

h

y

W

w

De
ep

Le
ar
ni
ng

8

Simple FFN with hidden layer
• Let us assume that the hidden unit h computes f (1)(x;W, c)

• In the next layer y = f (2)(h;w, b) is computed
• Complete model f(x;W, c,w, b) = f (2)(f (1)(x))
• Suppose f (1)(x) = WTx and f 2(h) = hTw then f(x) = wTWTx

x1 x2

h1 h2

y

x

h

y

W

w

De
ep

Le
ar
ni
ng

8

Simple FFN with hidden layer
• Let us assume that the hidden unit h computes f (1)(x;W, c)
• In the next layer y = f (2)(h;w, b) is computed

• Complete model f(x;W, c,w, b) = f (2)(f (1)(x))
• Suppose f (1)(x) = WTx and f 2(h) = hTw then f(x) = wTWTx

x1 x2

h1 h2

y

x

h

y

W

w

De
ep

Le
ar
ni
ng

8

Simple FFN with hidden layer
• Let us assume that the hidden unit h computes f (1)(x;W, c)
• In the next layer y = f (2)(h;w, b) is computed
• Complete model f(x;W, c,w, b) = f (2)(f (1)(x))

• Suppose f (1)(x) = WTx and f 2(h) = hTw then f(x) = wTWTx

x1 x2

h1 h2

y

x

h

y

W

w

De
ep

Le
ar
ni
ng

8

Simple FFN with hidden layer
• Let us assume that the hidden unit h computes f (1)(x;W, c)
• In the next layer y = f (2)(h;w, b) is computed
• Complete model f(x;W, c,w, b) = f (2)(f (1)(x))
• Suppose f (1)(x) = WTx and f 2(h) = hTw

then f(x) = wTWTx

x1 x2

h1 h2

y

x

h

y

W

w

De
ep

Le
ar
ni
ng

8

Simple FFN with hidden layer
• Let us assume that the hidden unit h computes f (1)(x;W, c)
• In the next layer y = f (2)(h;w, b) is computed
• Complete model f(x;W, c,w, b) = f (2)(f (1)(x))
• Suppose f (1)(x) = WTx and f 2(h) = hTw then f(x) = wTWTx

x1 x2

h1 h2

y

x

h

y

W

w

De
ep

Le
ar
ni
ng

9

Simple FFN with hidden layer (contd.)
• We need to have nonlinear function to describe the features
• Usually NN have affine transformation of learned parameters fol-

lowed by nonlinear activation function
• Let us use h = g(WTx + c)
• Let us use ReLU as activation function g(z) = max{0, z}
• g is chosen element wise hi = g(xTW:,i + ci)

De
ep

Le
ar
ni
ng

10

Simple FFN with hidden layer (contd.)
• Complete network is f(x;W, c,w, b) = wT max{0,WTx + c}+ b

• A solution for XOR problem can be as follows

• W =

[
1 1

1 1

]
, c =

[
0

−1

]
, w =

[
1

−2

]
, b = 0

• Now we have

• X =

0 0

1 0

0 1

1 1

, XW =

0 0

1 1

1 1

2 2

, add bias c

0 −1

1 0

1 0

2 1

, compute h

0 0

1 0

1 0

2 1

, multiply

with w

0

1

1

0

De
ep

Le
ar
ni
ng

10

Simple FFN with hidden layer (contd.)
• Complete network is f(x;W, c,w, b) = wT max{0,WTx + c}+ b
• A solution for XOR problem can be as follows

• W =

[
1 1

1 1

]
, c =

[
0

−1

]
, w =

[
1

−2

]
, b = 0

• Now we have

• X =

0 0

1 0

0 1

1 1

, XW =

0 0

1 1

1 1

2 2

, add bias c

0 −1

1 0

1 0

2 1

, compute h

0 0

1 0

1 0

2 1

, multiply

with w

0

1

1

0

De
ep

Le
ar
ni
ng

10

Simple FFN with hidden layer (contd.)
• Complete network is f(x;W, c,w, b) = wT max{0,WTx + c}+ b
• A solution for XOR problem can be as follows

• W =

[
1 1

1 1

]
, c =

[
0

−1

]
, w =

[
1

−2

]
, b = 0

• Now we have

• X

=

0 0

1 0

0 1

1 1

, XW =

0 0

1 1

1 1

2 2

, add bias c

0 −1

1 0

1 0

2 1

, compute h

0 0

1 0

1 0

2 1

, multiply

with w

0

1

1

0

De
ep

Le
ar
ni
ng

10

Simple FFN with hidden layer (contd.)
• Complete network is f(x;W, c,w, b) = wT max{0,WTx + c}+ b
• A solution for XOR problem can be as follows

• W =

[
1 1

1 1

]
, c =

[
0

−1

]
, w =

[
1

−2

]
, b = 0

• Now we have

• X =

0 0

1 0

0 1

1 1

,

XW =

0 0

1 1

1 1

2 2

, add bias c

0 −1

1 0

1 0

2 1

, compute h

0 0

1 0

1 0

2 1

, multiply

with w

0

1

1

0

De
ep

Le
ar
ni
ng

10

Simple FFN with hidden layer (contd.)
• Complete network is f(x;W, c,w, b) = wT max{0,WTx + c}+ b
• A solution for XOR problem can be as follows

• W =

[
1 1

1 1

]
, c =

[
0

−1

]
, w =

[
1

−2

]
, b = 0

• Now we have

• X =

0 0

1 0

0 1

1 1

, XW

=

0 0

1 1

1 1

2 2

, add bias c

0 −1

1 0

1 0

2 1

, compute h

0 0

1 0

1 0

2 1

, multiply

with w

0

1

1

0

De
ep

Le
ar
ni
ng

10

Simple FFN with hidden layer (contd.)
• Complete network is f(x;W, c,w, b) = wT max{0,WTx + c}+ b
• A solution for XOR problem can be as follows

• W =

[
1 1

1 1

]
, c =

[
0

−1

]
, w =

[
1

−2

]
, b = 0

• Now we have

• X =

0 0

1 0

0 1

1 1

, XW =

0 0

1 1

1 1

2 2

,

add bias c

0 −1

1 0

1 0

2 1

, compute h

0 0

1 0

1 0

2 1

, multiply

with w

0

1

1

0

De
ep

Le
ar
ni
ng

10

Simple FFN with hidden layer (contd.)
• Complete network is f(x;W, c,w, b) = wT max{0,WTx + c}+ b
• A solution for XOR problem can be as follows

• W =

[
1 1

1 1

]
, c =

[
0

−1

]
, w =

[
1

−2

]
, b = 0

• Now we have

• X =

0 0

1 0

0 1

1 1

, XW =

0 0

1 1

1 1

2 2

, add bias c

0 −1

1 0

1 0

2 1

, compute h

0 0

1 0

1 0

2 1

, multiply

with w

0

1

1

0

De
ep

Le
ar
ni
ng

10

Simple FFN with hidden layer (contd.)
• Complete network is f(x;W, c,w, b) = wT max{0,WTx + c}+ b
• A solution for XOR problem can be as follows

• W =

[
1 1

1 1

]
, c =

[
0

−1

]
, w =

[
1

−2

]
, b = 0

• Now we have

• X =

0 0

1 0

0 1

1 1

, XW =

0 0

1 1

1 1

2 2

, add bias c

0 −1

1 0

1 0

2 1

,

compute h

0 0

1 0

1 0

2 1

, multiply

with w

0

1

1

0

De
ep

Le
ar
ni
ng

10

Simple FFN with hidden layer (contd.)
• Complete network is f(x;W, c,w, b) = wT max{0,WTx + c}+ b
• A solution for XOR problem can be as follows

• W =

[
1 1

1 1

]
, c =

[
0

−1

]
, w =

[
1

−2

]
, b = 0

• Now we have

• X =

0 0

1 0

0 1

1 1

, XW =

0 0

1 1

1 1

2 2

, add bias c

0 −1

1 0

1 0

2 1

, compute h

0 0

1 0

1 0

2 1

, multiply

with w

0

1

1

0

De
ep

Le
ar
ni
ng

10

Simple FFN with hidden layer (contd.)
• Complete network is f(x;W, c,w, b) = wT max{0,WTx + c}+ b
• A solution for XOR problem can be as follows

• W =

[
1 1

1 1

]
, c =

[
0

−1

]
, w =

[
1

−2

]
, b = 0

• Now we have

• X =

0 0

1 0

0 1

1 1

, XW =

0 0

1 1

1 1

2 2

, add bias c

0 −1

1 0

1 0

2 1

, compute h

0 0

1 0

1 0

2 1

,

multiply

with w

0

1

1

0

De
ep

Le
ar
ni
ng

10

Simple FFN with hidden layer (contd.)
• Complete network is f(x;W, c,w, b) = wT max{0,WTx + c}+ b
• A solution for XOR problem can be as follows

• W =

[
1 1

1 1

]
, c =

[
0

−1

]
, w =

[
1

−2

]
, b = 0

• Now we have

• X =

0 0

1 0

0 1

1 1

, XW =

0 0

1 1

1 1

2 2

, add bias c

0 −1

1 0

1 0

2 1

, compute h

0 0

1 0

1 0

2 1

, multiply

with w

0

1

1

0

De
ep

Le
ar
ni
ng

10

Simple FFN with hidden layer (contd.)
• Complete network is f(x;W, c,w, b) = wT max{0,WTx + c}+ b
• A solution for XOR problem can be as follows

• W =

[
1 1

1 1

]
, c =

[
0

−1

]
, w =

[
1

−2

]
, b = 0

• Now we have

• X =

0 0

1 0

0 1

1 1

, XW =

0 0

1 1

1 1

2 2

, add bias c

0 −1

1 0

1 0

2 1

, compute h

0 0

1 0

1 0

2 1

, multiply

with w

0

1

1

0

De
ep

Le
ar
ni
ng

11

Gradient based learning
• Similar to machine learning tasks, gradient descent based learning is used

• Need to specify optimization procedure, cost function and model family
• For NN, model is nonlinear and function becomes nonconvex

• Usually trained by iterative, gradient based optimizer
• Solved by using gradient descent or stochastic gradient descent (SGD)

De
ep

Le
ar
ni
ng

12

Gradient descent
• For a function y = f(x), derivative (slope at point x) of it is f ′(x) = dy

dx
• A small change in the input can cause output to move to a value given by f(x+ϵ) ≈ f(x)+ϵf ′(x)
• We need to take a jump so that y reduces (assuming minimization problem)
• We can say that f(x − ϵsign(f ′(x))) is less than f(x)
• For multiple inputs partial derivatives are used ie. ∂

∂xi
f(x)

• Gradient vector is represented as ∇xf(x)
• Gradient descent proposes a new point as x′ = x − ϵ∇xf(x) where ϵ is the learning rate

De
ep

Le
ar
ni
ng

13

Example

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10 12 14

De
ep

Le
ar
ni
ng

14

Example: Variation of MSE wrt w

 24

 26

 28

 30

 32

 34

 36

 38

 40

 42

 44

 0 5 10 15 20 25

M
S

E

w

De
ep

Le
ar
ni
ng

15

Example: Best fit

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10 12 14

M
S

E

w

De
ep

Le
ar
ni
ng

16

Minimization of MSE: Gradient descent
• Assuming MSE(train) = J(w1,w2)

• Target is to min
w1,w2

J(w1,w2)

• Approach
• Start with some w1,w2

• Keep modifying w1,w2 so that J(w1,w2) reduces till the desired accuracy is achieved

• Algorithm

• Repeat the following until convergence wj = wj −
∂

∂wj
J(w1,w2)

• Gradient descent proposes a new point as w′ = w − ϵ∇wf(w) where ϵ is the learning rate

De
ep

Le
ar
ni
ng

16

Minimization of MSE: Gradient descent
• Assuming MSE(train) = J(w1,w2)

• Target is to min
w1,w2

J(w1,w2)

• Approach
• Start with some w1,w2

• Keep modifying w1,w2 so that J(w1,w2) reduces till the desired accuracy is achieved
• Algorithm

• Repeat the following until convergence wj = wj −
∂

∂wj
J(w1,w2)

• Gradient descent proposes a new point as w′ = w − ϵ∇wf(w) where ϵ is the learning rate

y = 0.3x2, x0 = 3, α = 0.8 gradient=1.80002

xnew=1.56001gradient=0.936 xnew=0.81122gradient=0.48672 xnew=0.42184gradient=0.2531 xnew=0.21938gradient=0.13162 xnew=0.11409gradient=0.06845 xnew=0.05934gradient=0.0356 xnew=0.03087

De
ep

Le
ar
ni
ng

17

Gradient descent

y = 0.3x2, x0 = 3, α = 0.8 gradient=1.80002 xnew=1.56001

gradient=0.936 xnew=0.81122gradient=0.48672 xnew=0.42184gradient=0.2531 xnew=0.21938gradient=0.13162 xnew=0.11409gradient=0.06845 xnew=0.05934gradient=0.0356 xnew=0.03087

De
ep

Le
ar
ni
ng

17

Gradient descent

y = 0.3x2, x0 = 3, α = 0.8 gradient=1.80002 xnew=1.56001

gradient=0.936 xnew=0.81122gradient=0.48672 xnew=0.42184gradient=0.2531 xnew=0.21938gradient=0.13162 xnew=0.11409gradient=0.06845 xnew=0.05934gradient=0.0356 xnew=0.03087

De
ep

Le
ar
ni
ng

17

Gradient descent

y = 0.3x2, x0 = 3, α = 0.8 gradient=1.80002 xnew=1.56001gradient=0.936

xnew=0.81122gradient=0.48672 xnew=0.42184gradient=0.2531 xnew=0.21938gradient=0.13162 xnew=0.11409gradient=0.06845 xnew=0.05934gradient=0.0356 xnew=0.03087

De
ep

Le
ar
ni
ng

17

Gradient descent

y = 0.3x2, x0 = 3, α = 0.8 gradient=1.80002 xnew=1.56001gradient=0.936 xnew=0.81122

gradient=0.48672 xnew=0.42184gradient=0.2531 xnew=0.21938gradient=0.13162 xnew=0.11409gradient=0.06845 xnew=0.05934gradient=0.0356 xnew=0.03087

De
ep

Le
ar
ni
ng

17

Gradient descent

y = 0.3x2, x0 = 3, α = 0.8 gradient=1.80002 xnew=1.56001gradient=0.936 xnew=0.81122

gradient=0.48672 xnew=0.42184gradient=0.2531 xnew=0.21938gradient=0.13162 xnew=0.11409gradient=0.06845 xnew=0.05934gradient=0.0356 xnew=0.03087

De
ep

Le
ar
ni
ng

17

Gradient descent

y = 0.3x2, x0 = 3, α = 0.8 gradient=1.80002 xnew=1.56001gradient=0.936 xnew=0.81122gradient=0.48672

xnew=0.42184gradient=0.2531 xnew=0.21938gradient=0.13162 xnew=0.11409gradient=0.06845 xnew=0.05934gradient=0.0356 xnew=0.03087

De
ep

Le
ar
ni
ng

17

Gradient descent

y = 0.3x2, x0 = 3, α = 0.8 gradient=1.80002 xnew=1.56001gradient=0.936 xnew=0.81122gradient=0.48672 xnew=0.42184

gradient=0.2531 xnew=0.21938gradient=0.13162 xnew=0.11409gradient=0.06845 xnew=0.05934gradient=0.0356 xnew=0.03087

De
ep

Le
ar
ni
ng

17

Gradient descent

y = 0.3x2, x0 = 3, α = 0.8 gradient=1.80002 xnew=1.56001gradient=0.936 xnew=0.81122gradient=0.48672 xnew=0.42184

gradient=0.2531 xnew=0.21938gradient=0.13162 xnew=0.11409gradient=0.06845 xnew=0.05934gradient=0.0356 xnew=0.03087

De
ep

Le
ar
ni
ng

17

Gradient descent

y = 0.3x2, x0 = 3, α = 0.8 gradient=1.80002 xnew=1.56001gradient=0.936 xnew=0.81122gradient=0.48672 xnew=0.42184gradient=0.2531

xnew=0.21938gradient=0.13162 xnew=0.11409gradient=0.06845 xnew=0.05934gradient=0.0356 xnew=0.03087

De
ep

Le
ar
ni
ng

17

Gradient descent

y = 0.3x2, x0 = 3, α = 0.8 gradient=1.80002 xnew=1.56001gradient=0.936 xnew=0.81122gradient=0.48672 xnew=0.42184gradient=0.2531 xnew=0.21938

gradient=0.13162 xnew=0.11409gradient=0.06845 xnew=0.05934gradient=0.0356 xnew=0.03087

De
ep

Le
ar
ni
ng

17

Gradient descent

y = 0.3x2, x0 = 3, α = 0.8 gradient=1.80002 xnew=1.56001gradient=0.936 xnew=0.81122gradient=0.48672 xnew=0.42184gradient=0.2531 xnew=0.21938

gradient=0.13162 xnew=0.11409gradient=0.06845 xnew=0.05934gradient=0.0356 xnew=0.03087

De
ep

Le
ar
ni
ng

17

Gradient descent

y = 0.3x2, x0 = 3, α = 0.8 gradient=1.80002 xnew=1.56001gradient=0.936 xnew=0.81122gradient=0.48672 xnew=0.42184gradient=0.2531 xnew=0.21938gradient=0.13162

xnew=0.11409gradient=0.06845 xnew=0.05934gradient=0.0356 xnew=0.03087

De
ep

Le
ar
ni
ng

17

Gradient descent

y = 0.3x2, x0 = 3, α = 0.8 gradient=1.80002 xnew=1.56001gradient=0.936 xnew=0.81122gradient=0.48672 xnew=0.42184gradient=0.2531 xnew=0.21938gradient=0.13162 xnew=0.11409

gradient=0.06845 xnew=0.05934gradient=0.0356 xnew=0.03087

De
ep

Le
ar
ni
ng

17

Gradient descent

y = 0.3x2, x0 = 3, α = 0.8 gradient=1.80002 xnew=1.56001gradient=0.936 xnew=0.81122gradient=0.48672 xnew=0.42184gradient=0.2531 xnew=0.21938gradient=0.13162 xnew=0.11409

gradient=0.06845 xnew=0.05934gradient=0.0356 xnew=0.03087

De
ep

Le
ar
ni
ng

17

Gradient descent

y = 0.3x2, x0 = 3, α = 0.8 gradient=1.80002 xnew=1.56001gradient=0.936 xnew=0.81122gradient=0.48672 xnew=0.42184gradient=0.2531 xnew=0.21938gradient=0.13162 xnew=0.11409gradient=0.06845

xnew=0.05934gradient=0.0356 xnew=0.03087

De
ep

Le
ar
ni
ng

17

Gradient descent

y = 0.3x2, x0 = 3, α = 0.8 gradient=1.80002 xnew=1.56001gradient=0.936 xnew=0.81122gradient=0.48672 xnew=0.42184gradient=0.2531 xnew=0.21938gradient=0.13162 xnew=0.11409gradient=0.06845 xnew=0.05934

gradient=0.0356 xnew=0.03087

De
ep

Le
ar
ni
ng

17

Gradient descent

y = 0.3x2, x0 = 3, α = 0.8 gradient=1.80002 xnew=1.56001gradient=0.936 xnew=0.81122gradient=0.48672 xnew=0.42184gradient=0.2531 xnew=0.21938gradient=0.13162 xnew=0.11409gradient=0.06845 xnew=0.05934

gradient=0.0356 xnew=0.03087

De
ep

Le
ar
ni
ng

17

Gradient descent

y = 0.3x2, x0 = 3, α = 0.8 gradient=1.80002 xnew=1.56001gradient=0.936 xnew=0.81122gradient=0.48672 xnew=0.42184gradient=0.2531 xnew=0.21938gradient=0.13162 xnew=0.11409gradient=0.06845 xnew=0.05934gradient=0.0356

xnew=0.03087

De
ep

Le
ar
ni
ng

17

Gradient descent

y = 0.3x2, x0 = 3, α = 0.8 gradient=1.80002 xnew=1.56001gradient=0.936 xnew=0.81122gradient=0.48672 xnew=0.42184gradient=0.2531 xnew=0.21938gradient=0.13162 xnew=0.11409gradient=0.06845 xnew=0.05934gradient=0.0356 xnew=0.03087

De
ep

Le
ar
ni
ng

17

Gradient descent

De
ep

Le
ar
ni
ng

18

Stochastic gradient descent
• Large training set are necessary for good generalization
• Cost function used for optimization is J(θ) = 1

m
∑m

i=1 L(x(i), y(i),θ)
• Gradient descent requires ∇θJ(θ) = 1

m
∑m

i=1∇θL(x(i), y(i),θ)

• Computation cost is O(m)

• For SGD, gradient is an expectation estimated from a small sample known as minibatch
(B = {x(1), . . . , x(m′)})

• Estimated gradient is g =
1

m′

m′∑
i=1

∇θL(x(i), y(i),θ)

• New point will be θ = θ − ϵg

De
ep

Le
ar
ni
ng

18

Stochastic gradient descent
• Large training set are necessary for good generalization
• Cost function used for optimization is J(θ) = 1

m
∑m

i=1 L(x(i), y(i),θ)
• Gradient descent requires ∇θJ(θ) = 1

m
∑m

i=1∇θL(x(i), y(i),θ)
• Computation cost is O(m)

• For SGD, gradient is an expectation estimated from a small sample known as minibatch
(B = {x(1), . . . , x(m′)})

• Estimated gradient is g =
1

m′

m′∑
i=1

∇θL(x(i), y(i),θ)

• New point will be θ = θ − ϵg

De
ep

Le
ar
ni
ng

18

Stochastic gradient descent
• Large training set are necessary for good generalization
• Cost function used for optimization is J(θ) = 1

m
∑m

i=1 L(x(i), y(i),θ)
• Gradient descent requires ∇θJ(θ) = 1

m
∑m

i=1∇θL(x(i), y(i),θ)
• Computation cost is O(m)

• For SGD, gradient is an expectation estimated from a small sample known as minibatch
(B = {x(1), . . . , x(m′)})

• Estimated gradient is g =
1

m′

m′∑
i=1

∇θL(x(i), y(i),θ)

• New point will be θ = θ − ϵg

Step Point Derivative New w

1 (1,2) 1*(4.0*1-2)=2.0 3.80
2 (2,4) 2*(3.8*2-4)=7.2 3.08
3 (3,6) 3*(3.1*3-6)=9.7 2.11
4 (4,8) 4*(2.1*4-8)=1.7 1.94
5 (1,2) 1*(1.9*1-2)=-0.1 1.94
6 (2,4) 2*(1.9*2-4)=-0.2 1.97
7 (3,6) 3*(2.0*3-6)=-0.3 1.99
8 (4,8) 4*(2.0*4-8)=-0.1 2.00
9 (1,2) 1*(2.0*1-2)=0.0 2.00

De
ep

Le
ar
ni
ng

19

SGD example
• Consider the following pair (x, y) of points - (1, 2), (2, 4), (3, 6), (4, 8)
• Let us try to fit a curve as follows y = w× x where w is initialized with 4, learning rate as 0.1
• MSE as cost function. Derivative will be x(w × x − y)

Step Point Derivative New w
1 (1,2) 1*(4.0*1-2)=2.0 3.80

2 (2,4) 2*(3.8*2-4)=7.2 3.08
3 (3,6) 3*(3.1*3-6)=9.7 2.11
4 (4,8) 4*(2.1*4-8)=1.7 1.94
5 (1,2) 1*(1.9*1-2)=-0.1 1.94
6 (2,4) 2*(1.9*2-4)=-0.2 1.97
7 (3,6) 3*(2.0*3-6)=-0.3 1.99
8 (4,8) 4*(2.0*4-8)=-0.1 2.00
9 (1,2) 1*(2.0*1-2)=0.0 2.00

De
ep

Le
ar
ni
ng

19

SGD example
• Consider the following pair (x, y) of points - (1, 2), (2, 4), (3, 6), (4, 8)
• Let us try to fit a curve as follows y = w× x where w is initialized with 4, learning rate as 0.1
• MSE as cost function. Derivative will be x(w × x − y)

Step Point Derivative New w
1 (1,2) 1*(4.0*1-2)=2.0 3.80
2 (2,4) 2*(3.8*2-4)=7.2 3.08

3 (3,6) 3*(3.1*3-6)=9.7 2.11
4 (4,8) 4*(2.1*4-8)=1.7 1.94
5 (1,2) 1*(1.9*1-2)=-0.1 1.94
6 (2,4) 2*(1.9*2-4)=-0.2 1.97
7 (3,6) 3*(2.0*3-6)=-0.3 1.99
8 (4,8) 4*(2.0*4-8)=-0.1 2.00
9 (1,2) 1*(2.0*1-2)=0.0 2.00

De
ep

Le
ar
ni
ng

19

SGD example
• Consider the following pair (x, y) of points - (1, 2), (2, 4), (3, 6), (4, 8)
• Let us try to fit a curve as follows y = w× x where w is initialized with 4, learning rate as 0.1
• MSE as cost function. Derivative will be x(w × x − y)

Step Point Derivative New w
1 (1,2) 1*(4.0*1-2)=2.0 3.80
2 (2,4) 2*(3.8*2-4)=7.2 3.08
3 (3,6) 3*(3.1*3-6)=9.7 2.11
4 (4,8) 4*(2.1*4-8)=1.7 1.94
5 (1,2) 1*(1.9*1-2)=-0.1 1.94
6 (2,4) 2*(1.9*2-4)=-0.2 1.97
7 (3,6) 3*(2.0*3-6)=-0.3 1.99
8 (4,8) 4*(2.0*4-8)=-0.1 2.00
9 (1,2) 1*(2.0*1-2)=0.0 2.00

De
ep

Le
ar
ni
ng

19

SGD example
• Consider the following pair (x, y) of points - (1, 2), (2, 4), (3, 6), (4, 8)
• Let us try to fit a curve as follows y = w× x where w is initialized with 4, learning rate as 0.1
• MSE as cost function. Derivative will be x(w × x − y)

Step Derivative New w

1 15 2.5
2 3.75 2.13
3 0.94 2.03
4 0.23 2.01
5 0.06 2.00

De
ep

Le
ar
ni
ng

20

GD example
• Consider the following pair (x, y) of points - (1, 2), (2, 4), (3, 6), (4, 8)
• Let us try to fit a curve as follows y = w× x where w is initialized with 4, learning rate as 0.1
• MSE as cost function. Derivative will be 1

4

∑
i xi(w × xi − yi)

Step Derivative New w
1 15 2.5

2 3.75 2.13
3 0.94 2.03
4 0.23 2.01
5 0.06 2.00

De
ep

Le
ar
ni
ng

20

GD example
• Consider the following pair (x, y) of points - (1, 2), (2, 4), (3, 6), (4, 8)
• Let us try to fit a curve as follows y = w× x where w is initialized with 4, learning rate as 0.1
• MSE as cost function. Derivative will be 1

4

∑
i xi(w × xi − yi)

Step Derivative New w
1 15 2.5
2 3.75 2.13

3 0.94 2.03
4 0.23 2.01
5 0.06 2.00

De
ep

Le
ar
ni
ng

20

GD example
• Consider the following pair (x, y) of points - (1, 2), (2, 4), (3, 6), (4, 8)
• Let us try to fit a curve as follows y = w× x where w is initialized with 4, learning rate as 0.1
• MSE as cost function. Derivative will be 1

4

∑
i xi(w × xi − yi)

Step Derivative New w
1 15 2.5
2 3.75 2.13
3 0.94 2.03
4 0.23 2.01
5 0.06 2.00

De
ep

Le
ar
ni
ng

20

GD example
• Consider the following pair (x, y) of points - (1, 2), (2, 4), (3, 6), (4, 8)
• Let us try to fit a curve as follows y = w× x where w is initialized with 4, learning rate as 0.1
• MSE as cost function. Derivative will be 1

4

∑
i xi(w × xi − yi)

De
ep

Le
ar
ni
ng

21

Cost function
• Similar to other parametric model like linear models
• Parametric model defines distribution p(y|x;θ)
• Principle of maximum likelihood is used (cross entropy between training data and model

prediction)
• Instead of predicting the whole distribution of y, some statistic of y conditioned on x is

predicted
• It can also contain regularization term

De
ep

Le
ar
ni
ng

22

Logistic regression
• Responses may be qualitative (categorical)

• Example: ⟨Hours of study, pass/fail⟩, ⟨MRI scan, benign/malignant⟩
• Output should be 0 or 1

• Predicting qualitative response is known as classification
• Linear regression does not help

De
ep

Le
ar
ni
ng

23

Issues with linear regression

De
ep

Le
ar
ni
ng

24

Logistic regression

De
ep

Le
ar
ni
ng

25

Logistic model
• Linear regression model to represent non-normalized probability p′(x) = w0 + w1x

• To avoid problem, we use function p(x) = ew0+w1x

1 + ew0+w1x

• Quantity p(x)
1−p(x) = ew0+w1x is known as odds

• Taking log on both the sides, we get log
(

p(x)
1− p(x)

)
= w0 + w1x

• Coefficient can be determined using maximum likelihood
• l(w0,w1) =

∏
i:yi=1

p(xi)
∏

j:yj=0

p(xj)

• Similar to linear regression except the output is mapped between 0 and 1 ie.

p(y|x,θ) = σ(θTx)

where σ(x) = 1

1 + exp(−x) (Sigmoid function)

De
ep

Le
ar
ni
ng

26

Maximum likelihood estimation
• Consider a set of m examples X = {x(1), . . . , x(m)} drawn independently from the true but

unknown data generating distribution pdata(x)
• Let pmodel(x;θ) be a parametric family of probability distribution

• Maximum likelihood estimator for θ is defined as

θML = arg max
θ

pmodel(X;θ) = arg max
θ

m∏
i=1

pmodel(x(i);θ)

• It can be written as θML = arg max
θ

m∑
i=1

log pmodel(x(i);θ)

• By dividing m we get θML = arg max
θ

EX∼pdata log pmodel(x;θ)

De
ep

Le
ar
ni
ng

26

Maximum likelihood estimation
• Consider a set of m examples X = {x(1), . . . , x(m)} drawn independently from the true but

unknown data generating distribution pdata(x)
• Let pmodel(x;θ) be a parametric family of probability distribution
• Maximum likelihood estimator for θ is defined as

θML = arg max
θ

pmodel(X;θ) = arg max
θ

m∏
i=1

pmodel(x(i);θ)

• It can be written as θML = arg max
θ

m∑
i=1

log pmodel(x(i);θ)

• By dividing m we get θML = arg max
θ

EX∼pdata log pmodel(x;θ)

De
ep

Le
ar
ni
ng

26

Maximum likelihood estimation
• Consider a set of m examples X = {x(1), . . . , x(m)} drawn independently from the true but

unknown data generating distribution pdata(x)
• Let pmodel(x;θ) be a parametric family of probability distribution
• Maximum likelihood estimator for θ is defined as

θML = arg max
θ

pmodel(X;θ) = arg max
θ

m∏
i=1

pmodel(x(i);θ)

• It can be written as θML = arg max
θ

m∑
i=1

log pmodel(x(i);θ)

• By dividing m we get θML = arg max
θ

EX∼pdata log pmodel(x;θ)

De
ep

Le
ar
ni
ng

26

Maximum likelihood estimation
• Consider a set of m examples X = {x(1), . . . , x(m)} drawn independently from the true but

unknown data generating distribution pdata(x)
• Let pmodel(x;θ) be a parametric family of probability distribution
• Maximum likelihood estimator for θ is defined as

θML = arg max
θ

pmodel(X;θ) = arg max
θ

m∏
i=1

pmodel(x(i);θ)

• It can be written as θML = arg max
θ

m∑
i=1

log pmodel(x(i);θ)

• By dividing m we get θML = arg max
θ

EX∼pdata log pmodel(x;θ)

De
ep

Le
ar
ni
ng

27

Maximum likelihood estimation (cont.)
• Minimizing dissimilarity between the empirical p̂data and model distribution pmodel and it is

measured by KL divergence
DKL(p̂data∥pmodel) = arg min

θ
EX∼p̂data [log p̂data(x)− log pmodel(x;θ)]

• We need to minimize − arg min
θ

EX∼p̂data log pmodel(x;θ)

De
ep

Le
ar
ni
ng

27

Maximum likelihood estimation (cont.)
• Minimizing dissimilarity between the empirical p̂data and model distribution pmodel and it is

measured by KL divergence
DKL(p̂data∥pmodel) = arg min

θ
EX∼p̂data [log p̂data(x)− log pmodel(x;θ)]

• We need to minimize − arg min
θ

EX∼p̂data log pmodel(x;θ)

De
ep

Le
ar
ni
ng

28

Conditional log-likelihood
• In most of the supervised learning we estimate P(y|x;θ)
• If X be the all inputs and Y be observed targets then conditional maximum likelihood

estimator is θML = arg max
θ

P(Y|X;θ)

• If the examples are assumed to be i.i.d then we can say

θML = arg max
θ

m∑
i=1

log P(y(i)|x(i);θ)

De
ep

Le
ar
ni
ng

29

Linear regression as maximum likelihood
• Instead of producing single prediction ŷ for a given x, we assume the model produces condi-

tional distribution p(y|x)
• For infinitely large training set, we can observe multiple examples having the same x but

different values of y
• Goal is to fit the distribution p(y|x)

• Let us assume, p(y|x) = N (y; ŷ(x;w), σ2)

• Since the examples are assumed to be i.i.d, conditional log-likelihood is given by
m∑

i=1

log p(y(i)|x(i);θ) = −m logσ − m
2

log(2π)−
m∑

i=1

∥ŷ(i) − y(i)∥2
2σ2

De
ep

Le
ar
ni
ng

29

Linear regression as maximum likelihood
• Instead of producing single prediction ŷ for a given x, we assume the model produces condi-

tional distribution p(y|x)
• For infinitely large training set, we can observe multiple examples having the same x but

different values of y
• Goal is to fit the distribution p(y|x)
• Let us assume, p(y|x) = N (y; ŷ(x;w), σ2)

• Since the examples are assumed to be i.i.d, conditional log-likelihood is given by
m∑

i=1

log p(y(i)|x(i);θ) = −m logσ − m
2

log(2π)−
m∑

i=1

∥ŷ(i) − y(i)∥2
2σ2

De
ep

Le
ar
ni
ng

29

Linear regression as maximum likelihood
• Instead of producing single prediction ŷ for a given x, we assume the model produces condi-

tional distribution p(y|x)
• For infinitely large training set, we can observe multiple examples having the same x but

different values of y
• Goal is to fit the distribution p(y|x)
• Let us assume, p(y|x) = N (y; ŷ(x;w), σ2)

• Since the examples are assumed to be i.i.d, conditional log-likelihood is given by
m∑

i=1

log p(y(i)|x(i);θ)

= −m logσ − m
2

log(2π)−
m∑

i=1

∥ŷ(i) − y(i)∥2
2σ2

De
ep

Le
ar
ni
ng

29

Linear regression as maximum likelihood
• Instead of producing single prediction ŷ for a given x, we assume the model produces condi-

tional distribution p(y|x)
• For infinitely large training set, we can observe multiple examples having the same x but

different values of y
• Goal is to fit the distribution p(y|x)
• Let us assume, p(y|x) = N (y; ŷ(x;w), σ2)

• Since the examples are assumed to be i.i.d, conditional log-likelihood is given by
m∑

i=1

log p(y(i)|x(i);θ) = −m logσ − m
2

log(2π)−
m∑

i=1

∥ŷ(i) − y(i)∥2
2σ2

De
ep

Le
ar
ni
ng

30

Learning conditional distributions
• Usually neural networks are trained using maximum likelihood. Therefore the cost function

is negative log-likelihood. Also known as cross entropy between training data and model
distribution

• Cost function J(θ) = −EX,Y∼p̂data log pmodel(y|x,θ)
• Uniform across different models
• Gradient of cost function is very much crucial

• Large and predictable gradient can serve good guide for learning process
• Function that saturates will have small gradient

• Activation function usually produces values in a bounded zone (saturates)
• Negative log-likelihood can overcome some of the problems

• Output unit having exp function can saturate for high negative value
• Log-likelihood cost function undoes the exp of some output functions

De
ep

Le
ar
ni
ng

31

Learning conditional statistics
• Instead of learning the whole distribution p(y|x;θ), we want to learn one conditional statistics

of y given x
• For a predicting function f(x;θ), we would like to predict the mean of y

• Neural network can represent any function f from a very wide range of functions
• Range of function is limited by features like continuity, boundedness, etc.
• Cost function becomes functional rather than a function

De
ep

Le
ar
ni
ng

31

Learning conditional statistics
• Instead of learning the whole distribution p(y|x;θ), we want to learn one conditional statistics

of y given x
• For a predicting function f(x;θ), we would like to predict the mean of y

• Neural network can represent any function f from a very wide range of functions
• Range of function is limited by features like continuity, boundedness, etc.

• Cost function becomes functional rather than a function

De
ep

Le
ar
ni
ng

31

Learning conditional statistics
• Instead of learning the whole distribution p(y|x;θ), we want to learn one conditional statistics

of y given x
• For a predicting function f(x;θ), we would like to predict the mean of y

• Neural network can represent any function f from a very wide range of functions
• Range of function is limited by features like continuity, boundedness, etc.
• Cost function becomes functional rather than a function

De
ep

Le
ar
ni
ng

32

Learning conditional statistics
• Need to solve the optimization problem

f ∗ = arg min
f

EX,Y∼pdata∥y − f(x)∥2

• Using calculus of variation, it gives f ∗(x) = EY∼pdata(y|x)[y]
• Mean of y for each value of x

• Using a different cost function f ∗ = arg min
f

EX,Y∼pdata∥y − f(x)∥1
• Median of y for each value of x

De
ep

Le
ar
ni
ng

32

Learning conditional statistics
• Need to solve the optimization problem

f ∗ = arg min
f

EX,Y∼pdata∥y − f(x)∥2

• Using calculus of variation, it gives f ∗(x) = EY∼pdata(y|x)[y]
• Mean of y for each value of x

• Using a different cost function f ∗ = arg min
f

EX,Y∼pdata∥y − f(x)∥1
• Median of y for each value of x

De
ep

Le
ar
ni
ng

32

Learning conditional statistics
• Need to solve the optimization problem

f ∗ = arg min
f

EX,Y∼pdata∥y − f(x)∥2

• Using calculus of variation, it gives f ∗(x) = EY∼pdata(y|x)[y]
• Mean of y for each value of x

• Using a different cost function f ∗ = arg min
f

EX,Y∼pdata∥y − f(x)∥1

• Median of y for each value of x

De
ep

Le
ar
ni
ng

32

Learning conditional statistics
• Need to solve the optimization problem

f ∗ = arg min
f

EX,Y∼pdata∥y − f(x)∥2

• Using calculus of variation, it gives f ∗(x) = EY∼pdata(y|x)[y]
• Mean of y for each value of x

• Using a different cost function f ∗ = arg min
f

EX,Y∼pdata∥y − f(x)∥1
• Median of y for each value of x

De
ep

Le
ar
ni
ng

33

Thank you!

De
ep

Le
ar
ni
ng

34

Calculus of variations
• Let us consider functional J[y] =

∫ x2

x1
L(x, y(x), y ′(x)) dx

• Let J[y] has local minima at f. Therefore, we can say J[f] ≤ J[f + εη]

• η is an arbitrary function of x such that η(x1) = η(x2) = 0 and differentiable

• Let us assume Φ(ε) = J[f + εη]. Therefore, Φ′(0) ≡ dΦ
dε

∣∣∣∣
ε=0

=

∫ x2

x1

dL
dε

∣∣∣∣
ε=0

dx = 0

• Now we can say, dL
dε =

∂L
∂y

dy
dε +

∂L
∂y ′

dy ′

dε
• As we have y = f + εη and y ′ = f ′ + εη′, therefore, dL

dε =
∂L
∂y η +

∂L
∂y ′ η

′

De
ep

Le
ar
ni
ng

34

Calculus of variations
• Let us consider functional J[y] =

∫ x2

x1
L(x, y(x), y ′(x)) dx

• Let J[y] has local minima at f. Therefore, we can say J[f] ≤ J[f + εη]

• η is an arbitrary function of x such that η(x1) = η(x2) = 0 and differentiable

• Let us assume Φ(ε) = J[f + εη]. Therefore, Φ′(0) ≡ dΦ
dε

∣∣∣∣
ε=0

=

∫ x2

x1

dL
dε

∣∣∣∣
ε=0

dx = 0

• Now we can say, dL
dε =

∂L
∂y

dy
dε +

∂L
∂y ′

dy ′

dε
• As we have y = f + εη and y ′ = f ′ + εη′, therefore, dL

dε =
∂L
∂y η +

∂L
∂y ′ η

′

De
ep

Le
ar
ni
ng

34

Calculus of variations
• Let us consider functional J[y] =

∫ x2

x1
L(x, y(x), y ′(x)) dx

• Let J[y] has local minima at f. Therefore, we can say J[f] ≤ J[f + εη]

• η is an arbitrary function of x such that η(x1) = η(x2) = 0 and differentiable

• Let us assume Φ(ε) = J[f + εη]. Therefore, Φ′(0) ≡ dΦ
dε

∣∣∣∣
ε=0

=

∫ x2

x1

dL
dε

∣∣∣∣
ε=0

dx

= 0

• Now we can say, dL
dε =

∂L
∂y

dy
dε +

∂L
∂y ′

dy ′

dε
• As we have y = f + εη and y ′ = f ′ + εη′, therefore, dL

dε =
∂L
∂y η +

∂L
∂y ′ η

′

De
ep

Le
ar
ni
ng

34

Calculus of variations
• Let us consider functional J[y] =

∫ x2

x1
L(x, y(x), y ′(x)) dx

• Let J[y] has local minima at f. Therefore, we can say J[f] ≤ J[f + εη]

• η is an arbitrary function of x such that η(x1) = η(x2) = 0 and differentiable

• Let us assume Φ(ε) = J[f + εη]. Therefore, Φ′(0) ≡ dΦ
dε

∣∣∣∣
ε=0

=

∫ x2

x1

dL
dε

∣∣∣∣
ε=0

dx = 0

• Now we can say, dL
dε =

∂L
∂y

dy
dε +

∂L
∂y ′

dy ′

dε
• As we have y = f + εη and y ′ = f ′ + εη′, therefore, dL

dε =
∂L
∂y η +

∂L
∂y ′ η

′

De
ep

Le
ar
ni
ng

34

Calculus of variations
• Let us consider functional J[y] =

∫ x2

x1
L(x, y(x), y ′(x)) dx

• Let J[y] has local minima at f. Therefore, we can say J[f] ≤ J[f + εη]

• η is an arbitrary function of x such that η(x1) = η(x2) = 0 and differentiable

• Let us assume Φ(ε) = J[f + εη]. Therefore, Φ′(0) ≡ dΦ
dε

∣∣∣∣
ε=0

=

∫ x2

x1

dL
dε

∣∣∣∣
ε=0

dx = 0

• Now we can say, dL
dε =

∂L
∂y

dy
dε +

∂L
∂y ′

dy ′

dε

• As we have y = f + εη and y ′ = f ′ + εη′, therefore, dL
dε =

∂L
∂y η +

∂L
∂y ′ η

′

De
ep

Le
ar
ni
ng

34

Calculus of variations
• Let us consider functional J[y] =

∫ x2

x1
L(x, y(x), y ′(x)) dx

• Let J[y] has local minima at f. Therefore, we can say J[f] ≤ J[f + εη]

• η is an arbitrary function of x such that η(x1) = η(x2) = 0 and differentiable

• Let us assume Φ(ε) = J[f + εη]. Therefore, Φ′(0) ≡ dΦ
dε

∣∣∣∣
ε=0

=

∫ x2

x1

dL
dε

∣∣∣∣
ε=0

dx = 0

• Now we can say, dL
dε =

∂L
∂y

dy
dε +

∂L
∂y ′

dy ′

dε
• As we have y = f + εη and y ′ = f ′ + εη′, therefore, dL

dε

=
∂L
∂y η +

∂L
∂y ′ η

′

De
ep

Le
ar
ni
ng

34

Calculus of variations
• Let us consider functional J[y] =

∫ x2

x1
L(x, y(x), y ′(x)) dx

• Let J[y] has local minima at f. Therefore, we can say J[f] ≤ J[f + εη]

• η is an arbitrary function of x such that η(x1) = η(x2) = 0 and differentiable

• Let us assume Φ(ε) = J[f + εη]. Therefore, Φ′(0) ≡ dΦ
dε

∣∣∣∣
ε=0

=

∫ x2

x1

dL
dε

∣∣∣∣
ε=0

dx = 0

• Now we can say, dL
dε =

∂L
∂y

dy
dε +

∂L
∂y ′

dy ′

dε
• As we have y = f + εη and y ′ = f ′ + εη′, therefore, dL

dε =
∂L
∂y η +

∂L
∂y ′ η

′

De
ep

Le
ar
ni
ng

35

Calculus of variations (contd.)
• Now we have∫ x2

x1

dL
dε

∣∣∣∣
ε=0

dx =

∫ x2

x1

(
∂L
∂f η +

∂L
∂f ′ η

′
)

dx

=

∫ x2

x1

(
∂L
∂f η − η

d
dx

∂L
∂f ′

)
dx + ∂L

∂f ′ η
∣∣∣∣x2
x1

• Hence
∫ x2

x1
η

(
∂L
∂f − d

dx
∂L
∂f ′

)
dx = 0

• Euler-Lagrange equation ∂L
∂f − d

dx
∂L
∂f ′ = 0

De
ep

Le
ar
ni
ng

35

Calculus of variations (contd.)
• Now we have∫ x2

x1

dL
dε

∣∣∣∣
ε=0

dx =

∫ x2

x1

(
∂L
∂f η +

∂L
∂f ′ η

′
)

dx =

∫ x2

x1

(
∂L
∂f η − η

d
dx

∂L
∂f ′

)
dx + ∂L

∂f ′ η
∣∣∣∣x2
x1

• Hence
∫ x2

x1
η

(
∂L
∂f − d

dx
∂L
∂f ′

)
dx = 0

• Euler-Lagrange equation ∂L
∂f − d

dx
∂L
∂f ′ = 0

De
ep

Le
ar
ni
ng

35

Calculus of variations (contd.)
• Now we have∫ x2

x1

dL
dε

∣∣∣∣
ε=0

dx =

∫ x2

x1

(
∂L
∂f η +

∂L
∂f ′ η

′
)

dx =

∫ x2

x1

(
∂L
∂f η − η

d
dx

∂L
∂f ′

)
dx + ∂L

∂f ′ η
∣∣∣∣x2
x1

• Hence
∫ x2

x1
η

(
∂L
∂f − d

dx
∂L
∂f ′

)
dx = 0

• Euler-Lagrange equation ∂L
∂f − d

dx
∂L
∂f ′ = 0

De
ep

Le
ar
ni
ng

35

Calculus of variations (contd.)
• Now we have∫ x2

x1

dL
dε

∣∣∣∣
ε=0

dx =

∫ x2

x1

(
∂L
∂f η +

∂L
∂f ′ η

′
)

dx =

∫ x2

x1

(
∂L
∂f η − η

d
dx

∂L
∂f ′

)
dx + ∂L

∂f ′ η
∣∣∣∣x2
x1

• Hence
∫ x2

x1
η

(
∂L
∂f − d

dx
∂L
∂f ′

)
dx = 0

• Euler-Lagrange equation ∂L
∂f − d

dx
∂L
∂f ′ = 0

De
ep

Le
ar
ni
ng

36

Example
• Let us consider distance between two points A[y] =

∫ x2

x1

√
1 + [y ′(x)]2 dx

• y ′(x) = dy
dx , y1 = f(x1) , y2 = f(x2)

• We have, ∂L
∂f − d

dx
∂L
∂f ′ = 0 where L =

√
1 + [f ′(x)]2

• As f does not appear explicitly in L, hence d
dx

∂L
∂f ′ = 0

• Now we have, d
dx

f ′(x)√
1 + [f ′(x)]2

= 0

De
ep

Le
ar
ni
ng

36

Example
• Let us consider distance between two points A[y] =

∫ x2

x1

√
1 + [y ′(x)]2 dx

• y ′(x) = dy
dx , y1 = f(x1) , y2 = f(x2)

• We have, ∂L
∂f − d

dx
∂L
∂f ′ = 0 where L =

√
1 + [f ′(x)]2

• As f does not appear explicitly in L, hence d
dx

∂L
∂f ′ = 0

• Now we have, d
dx

f ′(x)√
1 + [f ′(x)]2

= 0

De
ep

Le
ar
ni
ng

36

Example
• Let us consider distance between two points A[y] =

∫ x2

x1

√
1 + [y ′(x)]2 dx

• y ′(x) = dy
dx , y1 = f(x1) , y2 = f(x2)

• We have, ∂L
∂f − d

dx
∂L
∂f ′ = 0 where L =

√
1 + [f ′(x)]2

• As f does not appear explicitly in L, hence d
dx

∂L
∂f ′ = 0

• Now we have, d
dx

f ′(x)√
1 + [f ′(x)]2

= 0

De
ep

Le
ar
ni
ng

36

Example
• Let us consider distance between two points A[y] =

∫ x2

x1

√
1 + [y ′(x)]2 dx

• y ′(x) = dy
dx , y1 = f(x1) , y2 = f(x2)

• We have, ∂L
∂f − d

dx
∂L
∂f ′ = 0 where L =

√
1 + [f ′(x)]2

• As f does not appear explicitly in L, hence d
dx

∂L
∂f ′ = 0

• Now we have, d
dx

f ′(x)√
1 + [f ′(x)]2

= 0

De
ep

Le
ar
ni
ng

37

Example
• Taking derivative we get d2f

dx2 · 1[√
1 + [f ′(x)]2

]3 = 0

• Therefore we have, d2f
dx2 = 0

• Hence we have f(x) = mx + b with m =
y2 − y1
x2 − x1

and b =
x2y1 − x1y2

x2 − x1

De
ep

Le
ar
ni
ng

37

Example
• Taking derivative we get d2f

dx2 · 1[√
1 + [f ′(x)]2

]3 = 0

• Therefore we have, d2f
dx2 = 0

• Hence we have f(x) = mx + b with m =
y2 − y1
x2 − x1

and b =
x2y1 − x1y2

x2 − x1

De
ep

Le
ar
ni
ng

37

Example
• Taking derivative we get d2f

dx2 · 1[√
1 + [f ′(x)]2

]3 = 0

• Therefore we have, d2f
dx2 = 0

• Hence we have f(x) = mx + b with m =
y2 − y1
x2 − x1

and b =
x2y1 − x1y2

x2 − x1

