CS365: Deep Learning

Deep Feedforward Network

Arijit Mondal
Dept. of Computer Science \& Engineering Indian Institute of Technology Patna arijit@iitp.ac.in

Multilayer neural network

Deep feedforward networks

- Also known as feedforward neural network or multilayer perceptron

Deep feedforward networks

- Also known as feedforward neural network or multilayer perceptron
- Goal of such network is to approximate some function f^{*}
- For classifier, x is mapped to category y ie. $y=f^{*}(x)$
- A feedforward network maps $y=f(x ; \boldsymbol{\theta})$ and learns $\boldsymbol{\theta}$ for which the result is the best function approximation

Deep feedforward networks

- Also known as feedforward neural network or multilayer perceptron
- Goal of such network is to approximate some function f^{*}
- For classifier, x is mapped to category y ie. $y=f^{*}(x)$
- A feedforward network maps $y=f(x ; \boldsymbol{\theta})$ and learns $\boldsymbol{\theta}$ for which the result is the best function approximation
- Information flows from input to intermediate to output
- No feedback, directed acyclic graph
- For general model, it can have feedback and known as recurrent neural network

Deep feedforward networks

- Also known as feedforward neural network or multilayer perceptron
- Goal of such network is to approximate some function f^{*}
- For classifier, x is mapped to category y ie. $y=f^{*}(x)$
- A feedforward network maps $y=f(x ; \boldsymbol{\theta})$ and learns $\boldsymbol{\theta}$ for which the result is the best function approximation
- Information flows from input to intermediate to output
- No feedback, directed acyclic graph
- For general model, it can have feedback and known as recurrent neural network
- Typically it represents composition of functions
- Three functions $f^{(1)}, f^{(2)}, f^{(3)}$ are connected in chain
- Overall function realized is $f(x)=f^{(3)}\left(f^{(2)}\left(f^{(1)}(x)\right)\right)$
- The number of layers provides the depth of the model

Deep feedforward networks

- Also known as feedforward neural network or multilayer perceptron
- Goal of such network is to approximate some function f^{*}
- For classifier, x is mapped to category y ie. $y=f^{*}(x)$
- A feedforward network maps $y=f(x ; \boldsymbol{\theta})$ and learns $\boldsymbol{\theta}$ for which the result is the best function approximation
- Information flows from input to intermediate to output
- No feedback, directed acyclic graph
- For general model, it can have feedback and known as recurrent neural network
- Typically it represents composition of functions
- Three functions $f^{(1)}, f^{(2)}, f^{(3)}$ are connected in chain
- Overall function realized is $f(x)=f^{(3)}\left(f^{(2)}\left(f^{(1)}(x)\right)\right)$
- The number of layers provides the depth of the model
- Goal of NN is not to model brain accurately!

Issues with linear FFN

- Fit well for linear and logistic regression
- Convex optimization technique may be used
- Capacity of such function is limited
- Model cannot understand interaction between any two variables

Overcome issues of linear FFN

- Transform \times (input) into $\phi(\mathrm{x})$ where ϕ is nonlinear transformation

Overcome issues of linear FFN

- Transform \times (input) into $\phi(x)$ where ϕ is nonlinear transformation
- How to choose ϕ ?

Overcome issues of linear FFN

- Transform \times (input) into $\phi(x)$ where ϕ is nonlinear transformation
- How to choose ϕ ?
- Use a very generic ϕ of high dimension
- Enough capacity but may result in poor generalization
- Very generic feature mapping usually based on principle of local smoothness
- Do not encode enough prior information

Overcome issues of linear FFN

- Transform \times (input) into $\phi(x)$ where ϕ is nonlinear transformation
- How to choose ϕ ?
- Use a very generic ϕ of high dimension
- Enough capacity but may result in poor generalization
- Very generic feature mapping usually based on principle of local smoothness
- Do not encode enough prior information
- Manually design ϕ
- Require domain knowledge

Overcome issues of linear FFN

- Transform \times (input) into $\phi(x)$ where ϕ is nonlinear transformation
- How to choose ϕ ?
- Use a very generic ϕ of high dimension
- Enough capacity but may result in poor generalization
- Very generic feature mapping usually based on principle of local smoothness
- Do not encode enough prior information
- Manually design ϕ
- Require domain knowledge
- Strategy of deep learning is to learn ϕ

Goal of deep learning

- We have a model $y=f(x ; \boldsymbol{\theta}, \mathrm{w})=\phi(\mathrm{x} ; \boldsymbol{\theta})^{T} \mathrm{w}$
- We use θ to learn ϕ
- w and ϕ determines the output. ϕ defines the hidden layer
- It looses the convexity of the training problem but benefits a lot
- Representation is parameterized as $\phi(\times, \boldsymbol{\theta})$
- $\boldsymbol{\theta}$ can be determined by solving optimization problem
- Advantages
- ϕ can be very generic
- Human practitioner can encode their knowledge to designing $\phi(\mathrm{x} ; \boldsymbol{\theta})$

Example

- Let us choose XOR function
- Target function is $y=f^{*}(x)$ and our model provides $y=f(x ; \boldsymbol{\theta})$
- Learning algorithm will choose the parameters θ to make f close to f^{*}

Example

- Let us choose XOR function
- Target function is $y=f^{*}(x)$ and our model provides $y=f(x ; \theta)$
- Learning algorithm will choose the parameters θ to make f close to f^{*}
- Target is to fit output for $X=\left\{[0,0]^{T},[0,1]^{T},[1,0]^{T},[1,1]^{T}\right\}$
- This can be treated as regression problem and MSE error can be chosen as loss function $\left(J(\boldsymbol{\theta})=\frac{1}{4} \sum_{x \in \mathrm{X}}\left(f^{*}(\mathrm{x})-f(\mathrm{x} ; \boldsymbol{\theta})\right)^{2}\right)$
- We need to choose $f(x ; \boldsymbol{\theta})$ where θ depends on w and b
- Let us consider a linear model $f(x ; w, b)=x^{T} w+b$

Example

- Let us choose XOR function
- Target function is $y=f^{*}(x)$ and our model provides $y=f(x ; \boldsymbol{\theta})$
- Learning algorithm will choose the parameters θ to make f close to f^{*}
- Target is to fit output for $X=\left\{[0,0]^{T},[0,1]^{T},[1,0]^{T},[1,1]^{T}\right\}$
- This can be treated as regression problem and MSE error can be chosen as loss function $\left(J(\boldsymbol{\theta})=\frac{1}{4} \sum_{x \in \mathrm{X}}\left(f^{*}(\mathrm{x})-f(\mathrm{x} ; \boldsymbol{\theta})\right)^{2}\right)$
- We need to choose $f(x ; \boldsymbol{\theta})$ where $\boldsymbol{\theta}$ depends on w and b
- Let us consider a linear model $f(x ; w, b)=x^{T} w+b$
- Solving these, we get $\mathrm{w}=0$ and $b=\frac{1}{2}$

Simple FFN with hidden layer

- Let us assume that the hidden unit h computes $f^{(1)}(\mathrm{x} ; \mathrm{W}, \mathrm{c})$

Simple FFN with hidden layer

- Let us assume that the hidden unit h computes $f^{(1)}(\mathrm{x} ; \mathrm{W}, \mathrm{c})$
- In the next layer $y=f^{(2)}(h ; w, b)$ is computed

Simple FFN with hidden layer

- Let us assume that the hidden unit h computes $f^{(1)}(\mathrm{x} ; \mathrm{W}, \mathrm{c})$
- In the next layer $y=f^{(2)}(h ; w, b)$ is computed
- Complete model $f(x ; W, c, w, b)=f^{(2)}\left(f^{(1)}(\mathrm{x})\right)$

Simple FFN with hidden layer

- Let us assume that the hidden unit h computes $f^{(1)}(\mathrm{x} ; \mathrm{W}, \mathrm{c})$
- In the next layer $y=f^{(2)}(h ; w, b)$ is computed
- Complete model $f(x ; W, c, w, b)=f^{(2)}\left(f^{(1)}(x)\right)$
- Suppose $f^{(1)}(x)=W^{T} \times$ and $f^{2}(h)=h^{T} W$

Simple FFN with hidden layer

- Let us assume that the hidden unit h computes $f^{(1)}(\mathrm{x} ; \mathrm{W}, \mathrm{c})$
- In the next layer $y=f^{(2)}(h ; w, b)$ is computed
- Complete model $f(x ; W, c, w, b)=f^{(2)}\left(f^{(1)}(x)\right)$
- Suppose $f^{(1)}(x)=W^{T} x$ and $f^{2}(h)=h^{T} w$ then $f(x)=w^{T} W^{T} x$

Simple FFN with hidden layer (contd.)

- We need to have nonlinear function to describe the features
- Usually NN have affine transformation of learned parameters followed by nonlinear activation function
- Let us use $h=g\left(\mathrm{~W}^{\top} \mathrm{x}+\mathrm{c}\right)$
- Let us use ReLU as activation function $g(z)=\max \{0, z\}$
- g is chosen element wise $h_{i}=g\left(\times^{\top} W_{:, i}+c_{i}\right)$

Simple FFN with hidden layer (contd.)

- Complete network is $f(x ; W, c, w, b)=w^{T} \max \left\{0, W^{T} x+c\right\}+b$

Simple FFN with hidden layer (contd.)

- Complete network is $f(x ; W, c, w, b)=w^{T} \max \left\{0, W^{T} x+c\right\}+b$
- A solution for XOR problem can be as follows
- $\mathbf{W}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right], \mathbf{c}=\left[\begin{array}{c}0 \\ -1\end{array}\right], \mathbf{w}=\left[\begin{array}{c}1 \\ -2\end{array}\right], b=0$

Simple FFN with hidden layer (contd.)

- Complete network is $f(x ; W, c, w, b)=w^{T} \max \left\{0, W^{T} x+c\right\}+b$
- A solution for XOR problem can be as follows
- $\mathbf{W}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right], \mathbf{c}=\left[\begin{array}{c}0 \\ -1\end{array}\right], \mathbf{w}=\left[\begin{array}{c}1 \\ -2\end{array}\right], b=0$
- Now we have
- X

Simple FFN with hidden layer (contd.)

- Complete network is $f(x ; W, c, w, b)=w^{T} \max \left\{0, W^{T} x+c\right\}+b$
- A solution for XOR problem can be as follows
- $\mathbf{W}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right], \mathbf{c}=\left[\begin{array}{c}0 \\ -1\end{array}\right], \mathbf{w}=\left[\begin{array}{c}1 \\ -2\end{array}\right], b=0$
- Now we have
$\mathbf{X}=\left[\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1\end{array}\right]$,

Simple FFN with hidden layer (contd.)

- Complete network is $f(x ; W, c, w, b)=w^{T} \max \left\{0, W^{T} x+c\right\}+b$
- A solution for XOR problem can be as follows
- $\mathbf{W}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right], \mathbf{c}=\left[\begin{array}{c}0 \\ -1\end{array}\right], \mathbf{w}=\left[\begin{array}{c}1 \\ -2\end{array}\right], b=0$
- Now we have
- $\mathrm{X}=\left[\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1\end{array}\right], \mathrm{XW}$

Simple FFN with hidden layer (contd.)

- Complete network is $f(x ; W, c, w, b)=w^{T} \max \left\{0, W^{T} x+c\right\}+b$
- A solution for XOR problem can be as follows
- $\mathbf{W}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right], \mathbf{c}=\left[\begin{array}{c}0 \\ -1\end{array}\right], \mathbf{w}=\left[\begin{array}{c}1 \\ -2\end{array}\right], b=0$
- Now we have
- $\mathbf{X}=\left[\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1\end{array}\right], \mathrm{XW}=\left[\begin{array}{ll}0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 2 & 2\end{array}\right]$,

Simple FFN with hidden layer (contd.)

- Complete network is $f(x ; W, c, w, b)=w^{T} \max \left\{0, W^{T} x+c\right\}+b$
- A solution for XOR problem can be as follows
- $\mathbf{W}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right], \mathbf{c}=\left[\begin{array}{c}0 \\ -1\end{array}\right], \mathbf{w}=\left[\begin{array}{c}1 \\ -2\end{array}\right], b=0$
- Now we have
- $\mathbf{X}=\left[\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1\end{array}\right], \mathbf{X W}=\left[\begin{array}{ll}0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 2 & 2\end{array}\right]$, add bias \mathbf{C}

Simple FFN with hidden layer (contd.)

- Complete network is $f(x ; W, c, w, b)=w^{T} \max \left\{0, W^{T} x+c\right\}+b$
- A solution for XOR problem can be as follows
- $\mathbf{W}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right], \mathbf{c}=\left[\begin{array}{c}0 \\ -1\end{array}\right], \mathbf{w}=\left[\begin{array}{c}1 \\ -2\end{array}\right], b=0$
- Now we have
- $\mathbf{X}=\left[\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1\end{array}\right], \mathbf{X W}=\left[\begin{array}{ll}0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 2 & 2\end{array}\right]$, add bias $c\left[\begin{array}{cc}0 & -1 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1\end{array}\right]$,

Simple FFN with hidden layer (contd.)

- Complete network is $f(x ; W, c, w, b)=w^{T} \max \left\{0, W^{T} x+c\right\}+b$
- A solution for XOR problem can be as follows
- $\mathbf{W}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right], \mathbf{c}=\left[\begin{array}{c}0 \\ -1\end{array}\right], \mathbf{w}=\left[\begin{array}{c}1 \\ -2\end{array}\right], b=0$
- Now we have
- $\mathbf{X}=\left[\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1\end{array}\right], \mathrm{XW}=\left[\begin{array}{ll}0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 2 & 2\end{array}\right]$, add bias $\mathbf{c}\left[\begin{array}{cc}0 & -1 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1\end{array}\right]$, compute h

Simple FFN with hidden layer (contd.)

- Complete network is $f(x ; W, c, w, b)=w^{T} \max \left\{0, W^{T} x+c\right\}+b$
- A solution for XOR problem can be as follows
- $\mathbf{W}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right], \mathrm{c}=\left[\begin{array}{c}0 \\ -1\end{array}\right], \mathrm{w}=\left[\begin{array}{c}1 \\ -2\end{array}\right], b=0$
- Now we have
- $\mathbf{X}=\left[\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1\end{array}\right], \mathrm{XW}=\left[\begin{array}{ll}0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 2 & 2\end{array}\right]$, add bias $\mathrm{c}\left[\begin{array}{cc}0 & -1 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1\end{array}\right]$, compute $\mathrm{h}\left[\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1\end{array}\right]$,

Simple FFN with hidden layer (contd.)

- Complete network is $f(x ; W, c, w, b)=w^{T} \max \left\{0, W^{T} x+c\right\}+b$
- A solution for XOR problem can be as follows
- $\mathbf{W}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right], \mathrm{c}=\left[\begin{array}{c}0 \\ -1\end{array}\right], \mathrm{w}=\left[\begin{array}{c}1 \\ -2\end{array}\right], b=0$
- Now we have
- $\mathbf{X}=\left[\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1\end{array}\right], \mathrm{XW}=\left[\begin{array}{ll}0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 2 & 2\end{array}\right]$, add bias $\mathrm{c}\left[\begin{array}{cc}0 & -1 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1\end{array}\right]$, compute $\mathrm{h}\left[\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1\end{array}\right]$, multiply
with w

Simple FFN with hidden layer (contd.)

- Complete network is $f(x ; W, c, w, b)=w^{T} \max \left\{0, W^{T} x+c\right\}+b$
- A solution for XOR problem can be as follows
- $\mathbf{W}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right], \mathrm{c}=\left[\begin{array}{c}0 \\ -1\end{array}\right], \mathrm{w}=\left[\begin{array}{c}1 \\ -2\end{array}\right], b=0$
- Now we have
- $\mathrm{X}=\left[\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1\end{array}\right], \mathrm{XW}=\left[\begin{array}{ll}0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 2 & 2\end{array}\right]$, add bias $\mathrm{C}\left[\begin{array}{cc}0 & -1 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1\end{array}\right]$, compute $\mathrm{h}\left[\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1\end{array}\right]$, multiply with $w\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right]$

Gradient based learning

- Similar to machine learning tasks, gradient descent based learning is used
- Need to specify optimization procedure, cost function and model family
- For NN, model is nonlinear and function becomes nonconvex
- Usually trained by iterative, gradient based optimizer
- Solved by using gradient descent or stochastic gradient descent (SGD)

Gradient descent

- For a function $y=f(x)$, derivative (slope at point x) of it is $f^{\prime}(x)=\frac{d y}{d x}$
- A small change in the input can cause output to move to a value given by $f(x+\epsilon) \approx f(x)+\epsilon f^{\prime}(x)$
- We need to take a jump so that y reduces (assuming minimization problem)
- We can say that $f\left(x-\epsilon \operatorname{sign}\left(f^{\prime}(x)\right)\right)$ is less than $f(x)$
- For multiple inputs partial derivatives are used ie. $\frac{\partial}{\partial x_{i}} f(x)$
- Gradient vector is represented as $\nabla_{x} f(x)$
- Gradient descent proposes a new point as $x^{\prime}=x-\epsilon \nabla_{x} f(x)$ where ϵ is the learning rate

Example

Example: Variation of MSE wrt w

Example: Best fit

Minimization of MSE: Gradient descent

- Assuming $\operatorname{MSE}_{(\text {train })}=J\left(w_{1}, w_{2}\right)$
- Target is to $\min _{w_{1}, w_{2}} J\left(w_{1}, w_{2}\right)$
- Approach
- Start with some w_{1}, w_{2}
- Keep modifying w_{1}, w_{2} so that $J\left(w_{1}, w_{2}\right)$ reduces till the desired accuracy is achieved

Minimization of MSE: Gradient descent

- Assuming $\operatorname{MSE}_{(\text {train })}=J\left(w_{1}, w_{2}\right)$
- Target is to $\min _{w_{1}, w_{2}} J\left(w_{1}, w_{2}\right)$
- Approach
- Start with some w_{1}, w_{2}
- Keep modifying w_{1}, w_{2} so that $J\left(w_{1}, w_{2}\right)$ reduces till the desired accuracy is achieved
- Algorithm
- Repeat the following until convergence $w_{j}=w_{j}-\frac{\partial}{\partial w_{j}} J\left(w_{1}, w_{2}\right)$
- Gradient descent proposes a new point as $w^{\prime}=w-\epsilon \nabla_{w} f(w)$ where ϵ is the learning rate

Gradient descent

$$
y=0.3 x^{2}, x_{0}=3, \alpha=0.8 \quad \text { gradient }=1.80002
$$

Gradient descent

$$
y=0.3 x^{2}, x_{0}=3, \alpha=0.8 \quad \text { gradient }=1.80002
$$

$$
x_{n e w}=1.56001
$$

Gradient descent

$y=0.3 x^{2}, x_{0}=3, \alpha=0.8 \quad$ gradient $=1.80002$

$$
x_{n e w}=1.56001
$$

Gradient descent

$$
y=0.3 x^{2}, x_{0}=3, \alpha=0.8 \quad \text { gradient }=0.936
$$

$$
x_{n e w}=1.56001
$$

Gradient descent

$$
y=0.3 x^{2}, x_{0}=3, \alpha=0.8 \quad \text { gradient }=0.936 \quad x_{\text {new }}=0.81122
$$

Gradient descent

$$
y=0.3 x^{2}, x_{0}=3, \alpha=0.8 \quad \text { gradient }=0.936 \quad x_{\text {new }}=0.81122
$$

Gradient descent

$$
y=0.3 x^{2}, x_{0}=3, \alpha=0.8 \quad \text { gradient }=0.48672 \quad x_{\text {new }}=0.81122
$$

Gradient descent

$$
y=0.3 x^{2}, x_{0}=3, \alpha=0.8 \quad \text { gradient }=0.48672 \quad x_{\text {new }}=0.42184
$$

Gradient descent

$y=0.3 x^{2}, x_{0}=3, \alpha=0.8 \quad$ gradient $=0.48672$

$$
x_{n e w}=0.42184
$$

Gradient descent

$$
y=0.3 x^{2}, x_{0}=3, \alpha=0.8 \quad \text { gradient }=0.2531
$$

$$
x_{n e w}=0.42184
$$

Gradient descent

$$
y=0.3 x^{2}, x_{0}=3, \alpha=0.8 \quad \text { gradient }=0.2531
$$

$$
x_{n e w}=0.21938
$$

Gradient descent

Stochastic gradient descent

- Large training set are necessary for good generalization
- Cost function used for optimization is $J(\boldsymbol{\theta})=\frac{1}{m} \sum_{i=1}^{m} L\left(x^{(i)}, y^{(i)}, \theta\right)$
- Gradient descent requires $\nabla_{\theta} J(\boldsymbol{\theta})=\frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L\left(x^{(i)}, y^{(i)}, \boldsymbol{\theta}\right)$

Stochastic gradient descent

- Large training set are necessary for good generalization
- Cost function used for optimization is $J(\boldsymbol{\theta})=\frac{1}{m} \sum_{i=1}^{m} L\left(x^{(i)}, y^{(i)}, \theta\right)$
- Gradient descent requires $\nabla_{\theta} J(\boldsymbol{\theta})=\frac{1}{m} \sum_{i=1}^{m} \nabla_{\boldsymbol{\theta}} L\left(x^{(i)}, y^{(i)}, \boldsymbol{\theta}\right)$
- Computation cost is $O(m)$

Stochastic gradient descent

- Large training set are necessary for good generalization
- Cost function used for optimization is $J(\boldsymbol{\theta})=\frac{1}{m} \sum_{i=1}^{m} L\left(x^{(i)}, y^{(i)}, \theta\right)$
- Gradient descent requires $\nabla_{\theta} J(\boldsymbol{\theta})=\frac{1}{m} \sum_{i=1}^{m} \nabla_{\boldsymbol{\theta}} L\left(x^{(i)}, y^{(i)}, \boldsymbol{\theta}\right)$
- Computation cost is $O(m)$
- For SGD, gradient is an expectation estimated from a small sample known as minibatch $\left(\mathbb{B}=\left\{x^{(1)}, \ldots, x^{\left(m^{\prime}\right)}\right\}\right)$
- Estimated gradient is $\mathrm{g}=\frac{1}{m^{\prime}} \sum_{i=1}^{m^{\prime}} \nabla_{\theta} L\left(\mathrm{x}^{(i)}, y^{(i)}, \boldsymbol{\theta}\right)$
- New point will be $\boldsymbol{\theta}=\boldsymbol{\theta}-\epsilon \mathrm{g}$

SGD example

- Consider the following pair (x, y) of points - $(1,2),(2,4),(3,6),(4,8)$
- Let us try to fit a curve as follows $y=w \times x$ where w is initialized with 4 , learning rate as 0.1
- MSE as cost function. Derivative will be $x(w \times x-y)$
Step Point Derivative New w

SGD example

- Consider the following pair (x, y) of points - $(1,2),(2,4),(3,6),(4,8)$
- Let us try to fit a curve as follows $y=w \times x$ where w is initialized with 4 , learning rate as 0.1
- MSE as cost function. Derivative will be $x(w \times x-y)$

Step	Point	Derivative	New w
1	$(1,2)$	$1 *(4.0 * 1-2)=2.0$	3.80

SGD example

- Consider the following pair (x, y) of points - $(1,2),(2,4),(3,6),(4,8)$
- Let us try to fit a curve as follows $y=w \times x$ where w is initialized with 4 , learning rate as 0.1
- MSE as cost function. Derivative will be $x(w \times x-y)$

Step	Point	Derivative	New w
1	$(1,2)$	$1 *(4.0 * 1-2)=2.0$	3.80
2	$(2,4)$	$2 *(3.8 * 2-4)=7.2$	3.08

SGD example

- Consider the following pair (x, y) of points - $(1,2),(2,4),(3,6),(4,8)$
- Let us try to fit a curve as follows $y=w \times x$ where w is initialized with 4 , learning rate as 0.1
- MSE as cost function. Derivative will be $x(w \times x-y)$

Step	Point	Derivative	New w
1	$(1,2)$	$1 *(4.0 * 1-2)=2.0$	3.80
2	$(2,4)$	$2 *(3.8 * 2-4)=7.2$	3.08
3	$(3,6)$	$3 *(3.1 * 3-6)=9.7$	2.11
4	$(4,8)$	$4 *(2.1 * 4-8)=1.7$	1.94
5	$(1,2)$	$1 *(1.9 * 1-2)=-0.1$	1.94
6	$(2,4)$	$2 *(1.9 * 2-4)=-0.2$	1.97
7	$(3,6)$	$3 *(2.0 * 3-6)=-0.3$	1.99
8	$(4,8)$	$4 *(2.0 * 4-8)=-0.1$	2.00
9	$(1,2)$	$1 *(2.0 * 1-2)=0.0$	2.00

GD example

- Consider the following pair (x, y) of points - $(1,2),(2,4),(3,6),(4,8)$
- Let us try to fit a curve as follows $y=w \times x$ where w is initialized with 4 , learning rate as 0.1
- MSE as cost function. Derivative will be $\frac{1}{4} \sum_{i} x_{i}\left(w \times x_{i}-y_{i}\right)$

GD example

- Consider the following pair (x, y) of points - $(1,2),(2,4),(3,6),(4,8)$
- Let us try to fit a curve as follows $y=w \times x$ where w is initialized with 4 , learning rate as 0.1
- MSE as cost function. Derivative will be $\frac{1}{4} \sum_{i} x_{i}\left(w \times x_{i}-y_{i}\right)$

Step	Derivative	New w
1	15	2.5

GD example

- Consider the following pair (x, y) of points - $(1,2),(2,4),(3,6),(4,8)$
- Let us try to fit a curve as follows $y=w \times x$ where w is initialized with 4 , learning rate as 0.1
- MSE as cost function. Derivative will be $\frac{1}{4} \sum_{i} x_{i}\left(w \times x_{i}-y_{i}\right)$

Step	Derivative	New w
1	15	2.5
2	3.75	2.13

GD example

- Consider the following pair (x, y) of points - $(1,2),(2,4),(3,6),(4,8)$
- Let us try to fit a curve as follows $y=w \times x$ where w is initialized with 4 , learning rate as 0.1
- MSE as cost function. Derivative will be $\frac{1}{4} \sum_{i} x_{i}\left(w \times x_{i}-y_{i}\right)$

Step	Derivative	New w
1	15	2.5
2	3.75	2.13
3	0.94	2.03
4	0.23	2.01
5	0.06	2.00

Cost function

- Similar to other parametric model like linear models
- Parametric model defines distribution $p(y \mid x ; \boldsymbol{\theta})$
- Principle of maximum likelihood is used (cross entropy between training data and model prediction)
- Instead of predicting the whole distribution of y, some statistic of y conditioned on x is predicted
- It can also contain regularization term

Logistic regression

－Responses may be qualitative（categorical）
－Example：〈Hours of study，pass／fail〉，〈MRI scan，benign／malignant〉
－Output should be 0 or 1
－Predicting qualitative response is known as classification
－Linear regression does not help

Issues with linear regression

Logistic regression

Logistic model

- Linear regression model to represent non-normalized probability $p^{\prime}(x)=w_{0}+w_{1} x$
- To avoid problem, we use function $p(x)=\frac{e^{w_{0}+w_{1} x}}{1+e^{w_{0}+w_{1} x}}$
- Quantity $\frac{p(x)}{1-p(x)}=e^{w_{0}+w_{1} x}$ is known as odds
- Taking \log on both the sides, we get $\log \left(\frac{p(x)}{1-p(x)}\right)=w_{0}+w_{1} x$
- Coefficient can be determined using maximum likelihood
- $I\left(w_{0}, w_{1}\right)=\prod_{i: y_{i}=1} p\left(x_{i}\right) \prod_{j: y_{j}=0} p\left(x_{j}\right)$
- Similar to linear regression except the output is mapped between 0 and 1 ie.

$$
p(y \mid x, \boldsymbol{\theta})=\sigma\left(\boldsymbol{\theta}^{T} \mathrm{x}\right)
$$

where $\sigma(x)=\frac{1}{1+\exp (-x)}$ (Sigmoid function)

Maximum likelihood estimation

- Consider a set of m examples $\mathbb{X}=\left\{x^{(1)}, \ldots, x^{(m)}\right\}$ drawn independently from the true but unknown data generating distribution $p_{\text {data }}(x)$
- Let $p_{\text {model }}(\mathrm{x} ; \boldsymbol{\theta})$ be a parametric family of probability distribution

Maximum likelihood estimation

- Consider a set of m examples $\mathbb{X}=\left\{x^{(1)}, \ldots, x^{(m)}\right\}$ drawn independently from the true but unknown data generating distribution $p_{\text {data }}(x)$
- Let $p_{\text {model }}(\mathrm{x} ; \boldsymbol{\theta})$ be a parametric family of probability distribution
- Maximum likelihood estimator for θ is defined as

$$
\boldsymbol{\theta}_{M L}=\arg \max _{\boldsymbol{\theta}} p_{\text {model }}(\mathbb{X} ; \boldsymbol{\theta})=\arg \max _{\boldsymbol{\theta}} \prod_{i=1}^{m} p_{\text {model }}\left(\mathrm{x}^{(i)} ; \boldsymbol{\theta}\right)
$$

Maximum likelihood estimation

- Consider a set of m examples $\mathbb{X}=\left\{x^{(1)}, \ldots, x^{(m)}\right\}$ drawn independently from the true but unknown data generating distribution $p_{\text {data }}(x)$
- Let $p_{\text {model }}(\mathrm{x} ; \boldsymbol{\theta})$ be a parametric family of probability distribution
- Maximum likelihood estimator for θ is defined as

$$
\boldsymbol{\theta}_{M L}=\arg \max _{\boldsymbol{\theta}} p_{\text {model }}(\mathbb{X} ; \boldsymbol{\theta})=\arg \max _{\boldsymbol{\theta}} \prod_{i=1}^{m} p_{\text {model }}\left(\mathrm{x}^{(i)} ; \boldsymbol{\theta}\right)
$$

- It can be written as $\boldsymbol{\theta}_{M L}=\arg \max _{\boldsymbol{\theta}} \sum_{i=1}^{m} \log p_{\text {model }}\left(\mathrm{x}^{(i)} ; \boldsymbol{\theta}\right)$

Maximum likelihood estimation

- Consider a set of m examples $\mathbb{X}=\left\{x^{(1)}, \ldots, x^{(m)}\right\}$ drawn independently from the true but unknown data generating distribution $p_{\text {data }}(x)$
- Let $p_{\text {model }}(\mathrm{x} ; \boldsymbol{\theta})$ be a parametric family of probability distribution
- Maximum likelihood estimator for θ is defined as

$$
\boldsymbol{\theta}_{M L}=\arg \max _{\boldsymbol{\theta}} p_{\text {model }}(\mathbb{X} ; \boldsymbol{\theta})=\arg \max _{\boldsymbol{\theta}} \prod_{i=1}^{m} p_{\text {model }}\left(\mathrm{x}^{(i)} ; \boldsymbol{\theta}\right)
$$

- It can be written as $\boldsymbol{\theta}_{M L}=\arg \max _{\theta} \sum_{i=1}^{m} \log p_{\text {model }}\left(x^{(i)} ; \boldsymbol{\theta}\right)$
- By dividing m we get $\theta_{M L}=\arg \max _{\boldsymbol{\theta}} \mathbb{E}_{\mathrm{X} \sim p_{\text {data }}} \log p_{\text {model }}(\mathrm{X} ; \boldsymbol{\theta})$

Maximum likelihood estimation (cont.)

- Minimizing dissimilarity between the empirical $\hat{p}_{\text {data }}$ and model distribution $p_{\text {model }}$ and it is measured by KL divergence
$D_{K L}\left(\hat{p}_{\text {data }} \| p_{\text {model }}\right)=\arg \min _{\boldsymbol{\theta}} \mathbb{E}_{\mathrm{X} \sim \hat{p}_{\text {data }}}\left[\log \hat{p}_{\text {data }}(\mathrm{x})-\log p_{\text {model }}(\mathrm{x} ; \boldsymbol{\theta})\right]$

Maximum likelihood estimation (cont.)

- Minimizing dissimilarity between the empirical $\hat{p}_{\text {data }}$ and model distribution $p_{\text {model }}$ and it is measured by KL divergence

$$
D_{K L}\left(\hat{p}_{\text {data }} \| p_{\text {model }}\right)=\arg \min _{\boldsymbol{\theta}} \mathbb{E}_{\mathrm{X} \sim \hat{p}_{\text {data }}}\left[\log \hat{p}_{\text {data }}(\mathrm{x})-\log p_{\text {model }}(\mathrm{x} ; \boldsymbol{\theta})\right]
$$

- We need to minimize $-\arg \min _{\boldsymbol{\theta}} \mathbb{E}_{\mathrm{X} \sim \hat{\rho}_{\text {data }}} \log p_{\text {model }}(\mathrm{X} ; \boldsymbol{\theta})$

Conditional log-likelihood

- In most of the supervised learning we estimate $P(\mathrm{y} \mid \mathrm{x} ; \boldsymbol{\theta})$
- If X be the all inputs and Y be observed targets then conditional maximum likelihood estimator is $\boldsymbol{\theta}_{M L}=\arg \max _{\boldsymbol{\theta}} P(\mathrm{Y} \mid \mathrm{X} ; \boldsymbol{\theta})$
- If the examples are assumed to be i.i.d then we can say

$$
\boldsymbol{\theta}_{M L}=\arg \max _{\boldsymbol{\theta}} \sum_{i=1}^{m} \log P\left(\mathrm{y}^{(i)} \mid \mathrm{x}^{(i)} ; \boldsymbol{\theta}\right)
$$

Linear regression as maximum likelihood

- Instead of producing single prediction \hat{y} for a given x , we assume the model produces conditional distribution $p(y \mid x)$
- For infinitely large training set, we can observe multiple examples having the same \times but different values of y
- Goal is to fit the distribution $p(y \mid x)$

Linear regression as maximum likelihood

- Instead of producing single prediction \hat{y} for a given x , we assume the model produces conditional distribution $p(y \mid x)$
- For infinitely large training set, we can observe multiple examples having the same \times but different values of y
- Goal is to fit the distribution $p(y \mid x)$
- Let us assume, $p(y \mid x)=\mathcal{N}\left(y ; \hat{y}(x ; w), \sigma^{2}\right)$

Linear regression as maximum likelihood

- Instead of producing single prediction \hat{y} for a given \times, we assume the model produces conditional distribution $p(y \mid x)$
- For infinitely large training set, we can observe multiple examples having the same \times but different values of y
- Goal is to fit the distribution $p(y \mid x)$
- Let us assume, $p(y \mid x)=\mathcal{N}\left(y ; \hat{y}(x ; w), \sigma^{2}\right)$
- Since the examples are assumed to be i.i.d, conditional log-likelihood is given by

$$
\sum_{i=1}^{m} \log p\left(\mathrm{y}^{(i)} \mid \mathrm{x}^{(i)} ; \boldsymbol{\theta}\right)
$$

Linear regression as maximum likelihood

- Instead of producing single prediction \hat{y} for a given \times, we assume the model produces conditional distribution $p(y \mid x)$
- For infinitely large training set, we can observe multiple examples having the same \times but different values of y
- Goal is to fit the distribution $p(y \mid x)$
- Let us assume, $p(y \mid x)=\mathcal{N}\left(y ; \hat{y}(x ; w), \sigma^{2}\right)$
- Since the examples are assumed to be i.i.d, conditional log-likelihood is given by

$$
\sum_{i=1}^{m} \log p\left(\mathrm{y}^{(i)} \mid \mathrm{x}^{(i)} ; \boldsymbol{\theta}\right)=-m \log \sigma-\frac{m}{2} \log (2 \pi)-\sum_{i=1}^{m} \frac{\left\|\hat{y}^{(i)}-y^{(i)}\right\|^{2}}{2 \sigma^{2}}
$$

Learning conditional distributions

- Usually neural networks are trained using maximum likelihood. Therefore the cost function is negative log-likelihood. Also known as cross entropy between training data and model distribution
- Cost function $J(\boldsymbol{\theta})=-\mathbb{E}_{\mathrm{X}, \mathrm{Y} \sim \hat{p}_{\text {data }}} \log p_{\text {model }}(\mathrm{y} \mid \mathrm{x}, \boldsymbol{\theta})$
- Uniform across different models
- Gradient of cost function is very much crucial
- Large and predictable gradient can serve good guide for learning process
- Function that saturates will have small gradient
- Activation function usually produces values in a bounded zone (saturates)
- Negative log-likelihood can overcome some of the problems
- Output unit having exp function can saturate for high negative value
- Log-likelihood cost function undoes the exp of some output functions

Learning conditional statistics

- Instead of learning the whole distribution $p(y \mid x ; \boldsymbol{\theta})$, we want to learn one conditional statistics of y given x
- For a predicting function $f(x ; \boldsymbol{\theta})$, we would like to predict the mean of y

Learning conditional statistics

- Instead of learning the whole distribution $p(y \mid x ; \boldsymbol{\theta})$, we want to learn one conditional statistics of y given x
- For a predicting function $f(x ; \boldsymbol{\theta})$, we would like to predict the mean of y
- Neural network can represent any function f from a very wide range of functions
- Range of function is limited by features like continuity, boundedness, etc.

Learning conditional statistics

- Instead of learning the whole distribution $p(y \mid x ; \boldsymbol{\theta})$, we want to learn one conditional statistics of y given x
- For a predicting function $f(x ; \boldsymbol{\theta})$, we would like to predict the mean of y
- Neural network can represent any function f from a very wide range of functions
- Range of function is limited by features like continuity, boundedness, etc.
- Cost function becomes functional rather than a function

Learning conditional statistics

- Need to solve the optimization problem
$f^{*}=\arg \min _{f} \mathbb{E}_{\mathrm{X}, \mathrm{Y} \sim p_{\text {data }}}\|\mathrm{y}-f(\mathrm{x})\|^{2}$

Learning conditional statistics

- Need to solve the optimization problem

$$
f^{*}=\arg \min _{f} \mathbb{E}_{X, Y \sim p_{\text {data }}}\|\mathrm{y}-f(\mathrm{x})\|^{2}
$$

- Using calculus of variation, it gives $f^{*}(x)=\mathbb{E}_{Y \sim p_{\text {data }}(y \mid x)}[y]$
- Mean of y for each value of x

Learning conditional statistics

- Need to solve the optimization problem

$$
f^{*}=\arg \min _{f} \mathbb{E}_{\mathrm{X}, \mathrm{Y} \sim p_{\text {data }}}\|\mathrm{y}-f(\mathrm{x})\|^{2}
$$

- Using calculus of variation, it gives $f^{*}(x)=\mathbb{E}_{Y \sim p_{\text {data }}(y \mid x)}[y]$
- Mean of y for each value of x
- Using a different cost function $f^{*}=\arg \min _{f} \mathbb{E}_{\mathrm{X}, \mathrm{Y} \sim p_{\text {data }}}\|\mathrm{y}-f(\mathrm{X})\|_{1}$

Learning conditional statistics

- Need to solve the optimization problem

$$
f^{*}=\arg \min _{f} \mathbb{E}_{\mathrm{X}, \mathrm{Y} \sim p_{\text {data }}}\|\mathrm{y}-f(\mathrm{x})\|^{2}
$$

- Using calculus of variation, it gives $f^{*}(x)=\mathbb{E}_{Y \sim p_{\text {data }}(y \mid x)}[y]$
- Mean of y for each value of x
- Using a different cost function $f^{*}=\arg \min _{f} \mathbb{E}_{\mathrm{X}, \mathrm{Y} \sim p_{\text {data }}}\|\mathrm{y}-f(\mathrm{X})\|_{1}$
- Median of y for each value of x

Thante youl

Calculus of variations

- Let us consider functional $J[y]=\int_{x_{1}}^{x_{2}} L\left(x, y(x), y^{\prime}(x)\right) d x$

Calculus of variations

- Let us consider functional $J[y]=\int_{x_{1}}^{x_{2}} L\left(x, y(x), y^{\prime}(x)\right) d x$
- Let $J[y]$ has local minima at f. Therefore, we can say $J[f] \leq J[f+\varepsilon \eta]$
- η is an arbitrary function of x such that $\eta\left(x_{1}\right)=\eta\left(x_{2}\right)=0$ and differentiable

Calculus of variations

- Let us consider functional $J[y]=\int_{x_{1}}^{x_{2}} L\left(x, y(x), y^{\prime}(x)\right) d x$
- Let $J[y]$ has local minima at f. Therefore, we can say $J[f] \leq J[f+\varepsilon \eta]$
- η is an arbitrary function of x such that $\eta\left(x_{1}\right)=\eta\left(x_{2}\right)=0$ and differentiable
- Let us assume $\Phi(\varepsilon)=J[f+\varepsilon \eta]$. Therefore, $\left.\Phi^{\prime}(0) \equiv \frac{d \Phi}{d \varepsilon}\right|_{\varepsilon=0}=\left.\int_{x_{1}}^{x_{2}} \frac{d L}{d \varepsilon}\right|_{\varepsilon=0} d x$

Calculus of variations

- Let us consider functional $J[y]=\int_{x_{1}}^{x_{2}} L\left(x, y(x), y^{\prime}(x)\right) d x$
- Let $J[y]$ has local minima at f. Therefore, we can say $J[f] \leq J[f+\varepsilon \eta]$
- η is an arbitrary function of x such that $\eta\left(x_{1}\right)=\eta\left(x_{2}\right)=0$ and differentiable
- Let us assume $\Phi(\varepsilon)=J[f+\varepsilon \eta]$. Therefore, $\left.\Phi^{\prime}(0) \equiv \frac{d \Phi}{d \varepsilon}\right|_{\varepsilon=0}=\left.\int_{x_{1}}^{x_{2}} \frac{d L}{d \varepsilon}\right|_{\varepsilon=0} d x=0$

Calculus of variations

- Let us consider functional $J[y]=\int_{x_{1}}^{x_{2}} L\left(x, y(x), y^{\prime}(x)\right) d x$
- Let $J[y]$ has local minima at f. Therefore, we can say $J[f] \leq J[f+\varepsilon \eta]$
- η is an arbitrary function of x such that $\eta\left(x_{1}\right)=\eta\left(x_{2}\right)=0$ and differentiable
- Let us assume $\Phi(\varepsilon)=J[f+\varepsilon \eta]$. Therefore, $\left.\Phi^{\prime}(0) \equiv \frac{d \Phi}{d \varepsilon}\right|_{\varepsilon=0}=\left.\int_{x_{1}}^{x_{2}} \frac{d L}{d \varepsilon}\right|_{\varepsilon=0} d x=0$
- Now we can say, $\frac{d L}{d \varepsilon}=\frac{\partial L}{\partial y} \frac{d y}{d \varepsilon}+\frac{\partial L}{\partial y^{\prime}} \frac{d y^{\prime}}{d \varepsilon}$

Calculus of variations

- Let us consider functional $J[y]=\int_{x_{1}}^{x_{2}} L\left(x, y(x), y^{\prime}(x)\right) d x$
- Let $J[y]$ has local minima at f. Therefore, we can say $J[f] \leq J[f+\varepsilon \eta]$
- η is an arbitrary function of x such that $\eta\left(x_{1}\right)=\eta\left(x_{2}\right)=0$ and differentiable
- Let us assume $\Phi(\varepsilon)=J[f+\varepsilon \eta]$. Therefore, $\left.\Phi^{\prime}(0) \equiv \frac{d \Phi}{d \varepsilon}\right|_{\varepsilon=0}=\left.\int_{x_{1}}^{x_{2}} \frac{d L}{d \varepsilon}\right|_{\varepsilon=0} d x=0$
- Now we can say, $\frac{d L}{d \varepsilon}=\frac{\partial L}{\partial y} \frac{d y}{d \varepsilon}+\frac{\partial L}{\partial y^{\prime}} \frac{d y^{\prime}}{d \varepsilon}$
- As we have $y=f+\varepsilon \eta$ and $y^{\prime}=f^{\prime}+\varepsilon \eta^{\prime}$, therefore, $\frac{d L}{d \varepsilon}$

Calculus of variations

- Let us consider functional $J[y]=\int_{x_{1}}^{x_{2}} L\left(x, y(x), y^{\prime}(x)\right) d x$
- Let $J[y]$ has local minima at f. Therefore, we can say $J[f] \leq J[f+\varepsilon \eta]$
- η is an arbitrary function of x such that $\eta\left(x_{1}\right)=\eta\left(x_{2}\right)=0$ and differentiable
- Let us assume $\Phi(\varepsilon)=J[f+\varepsilon \eta]$. Therefore, $\left.\Phi^{\prime}(0) \equiv \frac{d \Phi}{d \varepsilon}\right|_{\varepsilon=0}=\left.\int_{x_{1}}^{x_{2}} \frac{d L}{d \varepsilon}\right|_{\varepsilon=0} d x=0$
- Now we can say, $\frac{d L}{d \varepsilon}=\frac{\partial L}{\partial y} \frac{d y}{d \varepsilon}+\frac{\partial L}{\partial y^{\prime}} \frac{d y^{\prime}}{d \varepsilon}$
- As we have $y=f+\varepsilon \eta$ and $y^{\prime}=f^{\prime}+\varepsilon \eta^{\prime}$, therefore, $\frac{d L}{d \varepsilon}=\frac{\partial L}{\partial y} \eta+\frac{\partial L}{\partial y^{\prime}} \eta^{\prime}$

Calculus of variations (contd.)

- Now we have

$$
\left.\int_{x_{1}}^{x_{2}} \frac{d L}{d \varepsilon}\right|_{\varepsilon=0} d x=\int_{x_{1}}^{x_{2}}\left(\frac{\partial L}{\partial f} \eta+\frac{\partial L}{\partial f^{\prime}} \eta^{\prime}\right) d x
$$

Calculus of variations (contd.)

- Now we have

$$
\left.\int_{x_{1}}^{x_{2}} \frac{d L}{d \varepsilon}\right|_{\varepsilon=0} d x=\int_{x_{1}}^{x_{2}}\left(\frac{\partial L}{\partial f} \eta+\frac{\partial L}{\partial f^{\prime}} \eta^{\prime}\right) d x=\int_{x_{1}}^{x_{2}}\left(\frac{\partial L}{\partial f} \eta-\eta \frac{d}{d x} \frac{\partial L}{\partial f^{\prime}}\right) d x+\left.\frac{\partial L}{\partial f^{\prime}} \eta\right|_{x_{1}} ^{x_{2}}
$$

Calculus of variations (contd.)

- Now we have

$$
\left.\int_{x_{1}}^{x_{2}} \frac{d L}{d \varepsilon}\right|_{\varepsilon=0} d x=\int_{x_{1}}^{x_{2}}\left(\frac{\partial L}{\partial f} \eta+\frac{\partial L}{\partial f^{\prime}} \eta^{\prime}\right) d x=\int_{x_{1}}^{x_{2}}\left(\frac{\partial L}{\partial f} \eta-\eta \frac{d}{d x} \frac{\partial L}{\partial f^{\prime}}\right) d x+\left.\frac{\partial L}{\partial f^{\prime}} \eta\right|_{x_{1}} ^{x_{2}}
$$

- Hence $\int_{x_{1}}^{x_{2}} \eta\left(\frac{\partial L}{\partial f}-\frac{d}{d x} \frac{\partial L}{\partial f^{\prime}}\right) d x=0$

Calculus of variations (contd.)

- Now we have

$$
\left.\int_{x_{1}}^{x_{2}} \frac{d L}{d \varepsilon}\right|_{\varepsilon=0} d x=\int_{x_{1}}^{x_{2}}\left(\frac{\partial L}{\partial f} \eta+\frac{\partial L}{\partial f^{\prime}} \eta^{\prime}\right) d x=\int_{x_{1}}^{x_{2}}\left(\frac{\partial L}{\partial f} \eta-\eta \frac{d}{d x} \frac{\partial L}{\partial f^{\prime}}\right) d x+\left.\frac{\partial L}{\partial f^{\prime}} \eta\right|_{x_{1}} ^{x_{2}}
$$

- Hence $\int_{x_{1}}^{x_{2}} \eta\left(\frac{\partial L}{\partial f}-\frac{d}{d x} \frac{\partial L}{\partial f^{\prime}}\right) d x=0$
- Euler-Lagrange equation $\frac{\partial L}{\partial f}-\frac{d}{d x} \frac{\partial L}{\partial f^{\prime}}=0$

Example

- Let us consider distance between two points $A[y]=\int_{x_{1}}^{x_{2}} \sqrt{1+\left[y^{\prime}(x)\right]^{2}} d x$
- $y^{\prime}(x)=\frac{d y}{d x}, \quad y_{1}=f\left(x_{1}\right), \quad y_{2}=f\left(x_{2}\right)$

Example

- Let us consider distance between two points $A[y]=\int_{x_{1}}^{x_{2}} \sqrt{1+\left[y^{\prime}(x)\right]^{2}} d x$
- $y^{\prime}(x)=\frac{d y}{d x}, \quad y_{1}=f\left(x_{1}\right), \quad y_{2}=f\left(x_{2}\right)$
- We have, $\frac{\partial L}{\partial f}-\frac{d}{d x} \frac{\partial L}{\partial f^{\prime}}=0$ where $L=\sqrt{1+\left[f^{\prime}(x)\right]^{2}}$

Example

- Let us consider distance between two points $A[y]=\int_{x_{1}}^{x_{2}} \sqrt{1+\left[y^{\prime}(x)\right]^{2}} d x$
- $y^{\prime}(x)=\frac{d y}{d x}, \quad y_{1}=f\left(x_{1}\right), \quad y_{2}=f\left(x_{2}\right)$
- We have, $\frac{\partial L}{\partial f}-\frac{d}{d x} \frac{\partial L}{\partial f^{\prime}}=0$ where $L=\sqrt{1+\left[f^{\prime}(x)\right]^{2}}$
- As f does not appear explicitly in L, hence $\frac{d}{d x} \frac{\partial L}{\partial f^{\prime}}=0$

Example

- Let us consider distance between two points $A[y]=\int_{x_{1}}^{x_{2}} \sqrt{1+\left[y^{\prime}(x)\right]^{2}} d x$
- $y^{\prime}(x)=\frac{d y}{d x}, \quad y_{1}=f\left(x_{1}\right), \quad y_{2}=f\left(x_{2}\right)$
- We have, $\frac{\partial L}{\partial f}-\frac{d}{d x} \frac{\partial L}{\partial f^{\prime}}=0$ where $L=\sqrt{1+\left[f^{\prime}(x)\right]^{2}}$
- As f does not appear explicitly in L, hence $\frac{d}{d x} \frac{\partial L}{\partial f^{\prime}}=0$
- Now we have, $\frac{d}{d x} \frac{f^{\prime}(x)}{\sqrt{1+\left[f^{\prime}(x)\right]^{2}}}=0$

Example

- Taking derivative we get $\frac{d^{2} f}{d x^{2}} \cdot \frac{1}{\left[\sqrt{1+\left[f^{\prime}(x)\right]^{2}}\right]^{3}}=0$

Example

- Taking derivative we get $\frac{d^{2} f}{d x^{2}} \cdot \frac{1}{\left[\sqrt{1+\left[f^{\prime}(x)\right]^{2}}\right]^{3}}=0$
- Therefore we have, $\frac{d^{2} f}{d x^{2}}=0$

Example

- Taking derivative we get $\frac{d^{2} f}{d x^{2}} \cdot \frac{1}{\left[\sqrt{1+\left[f^{\prime}(x)\right]^{2}}\right]^{3}}=0$
- Therefore we have, $\frac{d^{2} f}{d x^{2}}=0$
- Hence we have $f(x)=m x+b$ with $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ and $b=\frac{x_{2} y_{1}-x_{1} y_{2}}{x_{2}-x_{1}}$

