CS365: Deep Learning

Deep Feedforward Network

Arijit Mondal

Dept. of Computer Science & Engineering Indian Institute of Technology Patna

arijit@iitp.ac.in

Multilayer neural network

• Also known as feedforward neural network or multilayer perceptron

- Also known as feedforward neural network or multilayer perceptron
- Goal of such network is to approximate some function f^*
 - For classifier, x is mapped to category y ie. $y = f^*(x)$
 - A feedforward network maps $y = f(x; \theta)$ and learns θ for which the result is the best function approximation

- Also known as feedforward neural network or multilayer perceptron
- Goal of such network is to approximate some function f^*
 - For classifier, x is mapped to category y ie. $y = f^*(x)$
 - A feedforward network maps $y = f(x; \theta)$ and learns θ for which the result is the best function approximation
- Information flows from input to intermediate to output
 - No feedback, directed acyclic graph
 - For general model, it can have feedback and known as recurrent neural network

- Also known as feedforward neural network or multilayer perceptron
- Goal of such network is to approximate some function f^*
 - For classifier, x is mapped to category y ie. $y = f^*(x)$
 - A feedforward network maps $y = f(x; \theta)$ and learns θ for which the result is the best function approximation
- Information flows from input to intermediate to output
 - No feedback, directed acyclic graph
 - For general model, it can have feedback and known as recurrent neural network
- Typically it represents composition of functions
 - Three functions $f^{(1)}, f^{(2)}, f^{(3)}$ are connected in chain
 - Overall function realized is $f(x) = f^{(3)}(f^{(2)}(f^{(1)}(x)))$
 - The number of layers provides the depth of the model

- Also known as feedforward neural network or multilayer perceptron
- Goal of such network is to approximate some function f^*
 - For classifier, x is mapped to category y ie. $y = f^*(x)$
 - A feedforward network maps $y = f(x; \theta)$ and learns θ for which the result is the best function approximation
- Information flows from input to intermediate to output
 - No feedback, directed acyclic graph
 - For general model, it can have feedback and known as recurrent neural network
- Typically it represents composition of functions
 - Three functions $f^{(1)}, f^{(2)}, f^{(3)}$ are connected in chain
 - Overall function realized is $f(x) = f^{(3)}(f^{(2)}(f^{(1)}(x)))$
 - The number of layers provides the depth of the model
- Goal of NN is not to model brain accurately!

Issues with linear FFN

- Fit well for linear and logistic regression
- Convex optimization technique may be used
- Capacity of such function is limited
- Model cannot understand interaction between any two variables

• Transform x (input) into $\phi(x)$ where ϕ is nonlinear transformation

- Transform x (input) into $\phi(x)$ where ϕ is nonlinear transformation
- How to choose ϕ ?

- Transform x (input) into $\phi(x)$ where ϕ is nonlinear transformation
- How to choose ϕ ?
 - Use a very generic ϕ of high dimension
 - Enough capacity but may result in poor generalization
 - Very generic feature mapping usually based on principle of local smoothness
 - Do not encode enough prior information

- Transform x (input) into $\phi(x)$ where ϕ is nonlinear transformation
- How to choose ϕ ?
 - Use a very generic ϕ of high dimension
 - Enough capacity but may result in poor generalization
 - Very generic feature mapping usually based on principle of local smoothness
 - Do not encode enough prior information
 - Manually design ϕ
 - Require domain knowledge

- Transform x (input) into $\phi(x)$ where ϕ is nonlinear transformation
- How to choose ϕ ?
 - Use a very generic ϕ of high dimension
 - Enough capacity but may result in poor generalization
 - Very generic feature mapping usually based on principle of local smoothness
 - Do not encode enough prior information
 - Manually design ϕ
 - Require domain knowledge
 - Strategy of deep learning is to learn ϕ

Goal of deep learning

- We have a model $y = f(x; \theta, w) = \phi(x; \theta)^T w$
- We use $\boldsymbol{\theta}$ to learn ϕ
- w and ϕ determines the output. ϕ defines the hidden layer
- It looses the convexity of the training problem but benefits a lot
- Representation is parameterized as $\phi(\mathbf{x}, \boldsymbol{\theta})$
 - heta can be determined by solving optimization problem
- Advantages
 - ϕ can be very generic
 - Human practitioner can encode their knowledge to designing $\phi(\mathsf{x}; \boldsymbol{\theta})$

Example

- Let us choose XOR function
- Target function is $y = f^*(x)$ and our model provides $y = f(x; \theta)$
- Learning algorithm will choose the parameters θ to make f close to f^*

Example

- Let us choose XOR function
- Target function is $y = f^*(x)$ and our model provides $y = f(x; \theta)$
- Learning algorithm will choose the parameters θ to make f close to f^*
- Target is to fit output for $X = \{[0,0]^T, [0,1]^T, [1,0]^T, [1,1]^T\}$
- This can be treated as regression problem and MSE error can be chosen as loss function $(J(\theta) = \frac{1}{4} \sum_{x \in X} (f^*(x) f(x; \theta))^2)$
- We need to choose $f(x; \theta)$ where θ depends on w and b
- Let us consider a linear model $f(x; w, b) = x^T w + b$

Example

- Let us choose XOR function
- Target function is $y = f^*(x)$ and our model provides $y = f(x; \theta)$
- Learning algorithm will choose the parameters θ to make f close to f^*
- Target is to fit output for $X = \{[0,0]^T, [0,1]^T, [1,0]^T, [1,1]^T\}$
- This can be treated as regression problem and MSE error can be chosen as loss function $(J(\theta) = \frac{1}{4} \sum_{x \in X} (f^*(x) f(x; \theta))^2)$
- We need to choose $f(x; \theta)$ where θ depends on w and b
- Let us consider a linear model $f(x; w, b) = x^T w + b$
- Solving these, we get w = 0 and $b = \frac{1}{2}$

Let us assume that the hidden unit h computes f⁽¹⁾(x; W, c)

- Let us assume that the hidden unit h computes f⁽¹⁾(x; W, c)
- In the next layer $y = f^{(2)}(h; w, b)$ is computed

- Let us assume that the hidden unit h computes f⁽¹⁾(x; W, c)
- In the next layer $y = f^{(2)}(h; w, b)$ is computed
- Complete model $f(x; W, c, w, b) = f^{(2)}(f^{(1)}(x))$

- Let us assume that the hidden unit h computes f⁽¹⁾(x; W, c)
- In the next layer $y = f^{(2)}(h; w, b)$ is computed
- Complete model $f(x; W, c, w, b) = f^{(2)}(f^{(1)}(x))$
- Suppose $f^{(1)}(x) = W^T x$ and $f^2(h) = h^T w$

- Let us assume that the hidden unit h computes f⁽¹⁾(x; W, c)
- In the next layer $y = f^{(2)}(h; w, b)$ is computed
- Complete model $f(x; W, c, w, b) = f^{(2)}(f^{(1)}(x))$
- Suppose $f^{(1)}(x) = W^T x$ and $f^2(h) = h^T w$ then $f(x) = w^T W^T x$

- We need to have nonlinear function to describe the features
- Usually NN have affine transformation of learned parameters followed by nonlinear activation function
- Let us use $h = g(W^T x + c)$
- Let us use ReLU as activation function $g(z) = \max\{0, z\}$
- g is chosen element wise $h_i = g(x^T W_{:,i} + c_i)$

• Complete network is $f(x; W, c, w, b) = w^T \max\{0, W^T x + c\} + b$

- Complete network is $f(x; W, c, w, b) = w^T \max\{0, W^T x + c\} + b$
- A solution for XOR problem can be as follows

• W =
$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, c = $\begin{bmatrix} 0 \\ -1 \end{bmatrix}$, w = $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$, b = 0

- Complete network is $f(x; W, c, w, b) = w^T \max\{0, W^T x + c\} + b$
- A solution for XOR problem can be as follows

• W =
$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, c = $\begin{bmatrix} 0 \\ -1 \end{bmatrix}$, w = $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$, b = 0

Now we have

• X

- Complete network is $f(x; W, c, w, b) = w^T \max\{0, W^T x + c\} + b$
- A solution for XOR problem can be as follows

• W =
$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, c = $\begin{bmatrix} 0 \\ -1 \end{bmatrix}$, w = $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$, b = 0

• Now we have • $X = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$,

- Complete network is $f(x; W, c, w, b) = w^T \max\{0, W^T x + c\} + b$
- A solution for XOR problem can be as follows

• W =
$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, c = $\begin{bmatrix} 0 \\ -1 \end{bmatrix}$, w = $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$, b = 0

Now we have $\bullet X = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}, XW$

- Complete network is $f(x; W, c, w, b) = w^T \max\{0, W^T x + c\} + b$
- A solution for XOR problem can be as follows

• W =
$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, c = $\begin{bmatrix} 0 \\ -1 \end{bmatrix}$, w = $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$, b = 0

Now we have

- Complete network is $f(x; W, c, w, b) = w^T \max\{0, W^T x + c\} + b$
- A solution for XOR problem can be as follows

• W =
$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, c = $\begin{bmatrix} 0 \\ -1 \end{bmatrix}$, w = $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$, b = 0

• Now we have

•
$$X = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$
, $XW = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 2 & 2 \end{bmatrix}$, add bias c

- Complete network is $f(x; W, c, w, b) = w^T \max\{0, W^T x + c\} + b$
- A solution for XOR problem can be as follows

• W =
$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, c = $\begin{bmatrix} 0 \\ -1 \end{bmatrix}$, w = $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$, b = 0

• Now we have

•
$$X = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$
, $XW = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 2 & 2 \end{bmatrix}$, add bias c $\begin{bmatrix} 0 & -1 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{bmatrix}$,

- Complete network is $f(x; W, c, w, b) = w^T \max\{0, W^T x + c\} + b$
- A solution for XOR problem can be as follows

• W =
$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, c = $\begin{bmatrix} 0 \\ -1 \end{bmatrix}$, w = $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$, b = 0

Now we have

•
$$X = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$
, $XW = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 1 & 2 \\ 2 & 2 \end{bmatrix}$, add bias c $\begin{bmatrix} 0 & -1 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{bmatrix}$, compute h

- Complete network is $f(x; W, c, w, b) = w^T \max\{0, W^T x + c\} + b$
- A solution for XOR problem can be as follows

• W =
$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, c = $\begin{bmatrix} 0 \\ -1 \end{bmatrix}$, w = $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$, b = 0

Now we have

•
$$X = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$
, $XW = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 1 & 2 & 2 \end{bmatrix}$, add bias c $\begin{bmatrix} 0 & -1 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{bmatrix}$, compute h $\begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{bmatrix}$,

- Complete network is $f(x; W, c, w, b) = w^T \max\{0, W^T x + c\} + b$
- A solution for XOR problem can be as follows

• W =
$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, c = $\begin{bmatrix} 0 \\ -1 \end{bmatrix}$, w = $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$, b = 0

Now we have

•
$$X = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$
, $XW = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 1 & 2 \\ 2 \end{bmatrix}$, add bias c $\begin{bmatrix} 0 & -1 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{bmatrix}$, compute h $\begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{bmatrix}$, multiply

with \mathbf{w}

- Complete network is $f(x; W, c, w, b) = w^T \max\{0, W^T x + c\} + b$
- A solution for XOR problem can be as follows

• W =
$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, c = $\begin{bmatrix} 0 \\ -1 \end{bmatrix}$, w = $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$, b = 0

Now we have

with w $\begin{vmatrix} 1\\1\\1\end{vmatrix}$

•
$$X = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$
, $XW = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 1 & 2 \\ 2 \end{bmatrix}$, add bias $\begin{bmatrix} 0 & -1 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{bmatrix}$, compute $h \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{bmatrix}$, multiply

Gradient based learning

- Similar to machine learning tasks, gradient descent based learning is used
 - Need to specify optimization procedure, cost function and model family
- For NN, model is nonlinear and function becomes nonconvex
 - Usually trained by iterative, gradient based optimizer
- Solved by using gradient descent or stochastic gradient descent (SGD)
- For a function y = f(x), derivative (slope at point x) of it is $f'(x) = \frac{dy}{dx}$
- A small change in the input can cause output to move to a value given by $f(x+\epsilon) \approx f(x)+\epsilon f'(x)$
- We need to take a jump so that y reduces (assuming minimization problem)
- We can say that $f(x \epsilon \operatorname{sign}(f'(x)))$ is less than f(x)
- For multiple inputs partial derivatives are used ie. $\frac{\partial}{\partial x_i} f(x)$
- Gradient vector is represented as $\nabla_{x} f(x)$
- Gradient descent proposes a new point as $x' = x \epsilon \nabla_x f(x)$ where ϵ is the learning rate

Example

Example: Variation of MSE wrt *w*

Example: Best fit

Minimization of MSE: Gradient descent

- Assuming $MSE_{(train)} = J(w_1, w_2)$
- Target is to $\min_{w_1,w_2} J(w_1,w_2)$
- Approach
 - Start with some w_1, w_2
 - Keep modifying w_1, w_2 so that $J(w_1, w_2)$ reduces till the desired accuracy is achieved

Minimization of MSE: Gradient descent

- Assuming $MSE_{(train)} = J(w_1, w_2)$
- Target is to $\min_{w_1,w_2} J(w_1,w_2)$
- Approach
 - Start with some w_1, w_2
 - Keep modifying w_1, w_2 so that $J(w_1, w_2)$ reduces till the desired accuracy is achieved
- Algorithm
 - Repeat the following until convergence $w_j = w_j \frac{\partial}{\partial w_i} J(w_1, w_2)$
- Gradient descent proposes a new point as $w' = w \epsilon \nabla_w f(w)$ where ϵ is the learning rate

Stochastic gradient descent

- Large training set are necessary for good generalization
- Cost function used for optimization is $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} L(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}, \theta)$
- Gradient descent requires $\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\boldsymbol{\theta}} L(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}, \boldsymbol{\theta})$

Stochastic gradient descent

- Large training set are necessary for good generalization
- Cost function used for optimization is $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} L(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}, \theta)$
- Gradient descent requires $\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\boldsymbol{\theta}} L(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}, \boldsymbol{\theta})$
 - Computation cost is O(m)

Stochastic gradient descent

- Large training set are necessary for good generalization
- Cost function used for optimization is $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} L(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}, \theta)$
- Gradient descent requires $\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\boldsymbol{\theta}} L(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}, \boldsymbol{\theta})$
 - Computation cost is O(m)
- For SGD, gradient is an expectation estimated from a small sample known as minibatch $(\mathbb{B} = \{x^{(1)}, \dots, x^{(m')}\})$
- Estimated gradient is $g = \frac{1}{m'} \sum_{i=1}^{m'} \nabla_{\theta} L(x^{(i)}, y^{(i)}, \theta)$
- New point will be $\theta = \theta \epsilon g$

- Consider the following pair (x, y) of points (1, 2), (2, 4), (3, 6), (4, 8)
- Let us try to fit a curve as follows $y = w \times x$ where w is initialized with 4, learning rate as 0.1

New w

• MSE as cost function. Derivative will be $x(w \times x - y)$

Step Point Derivative

- Consider the following pair (x, y) of points (1, 2), (2, 4), (3, 6), (4, 8)
- Let us try to fit a curve as follows $y = w \times x$ where w is initialized with 4, learning rate as 0.1
- MSE as cost function. Derivative will be $x(w \times x y)$

Step	Point	Derivative	New w
1	(1,2)	1*(4.0*1-2)=2.0	3.80

- Consider the following pair (x, y) of points (1, 2), (2, 4), (3, 6), (4, 8)
- Let us try to fit a curve as follows $y = w \times x$ where w is initialized with 4, learning rate as 0.1
- MSE as cost function. Derivative will be $x(w \times x y)$

Step	Point	Derivative	New w
1	(1,2) (2,4)	1*(4.0*1-2)=2.0 2*(3.8*2-4)=7.2	3.80
2	(2,4)	2*(0:0*2 4)-1:2	0.00

- Consider the following pair (x, y) of points (1, 2), (2, 4), (3, 6), (4, 8)
- Let us try to fit a curve as follows $y = w \times x$ where w is initialized with 4, learning rate as 0.1
- MSE as cost function. Derivative will be $x(w \times x y)$

Step	Point	Derivative	New w
1	(1,2)	1*(4.0*1-2)=2.0	3.80
2	(2, 4)	2*(3.8*2-4)=7.2	3.08
3	(3,6)	3*(3.1*3-6)=9.7	2.11
4	(4,8)	4*(2.1*4-8)=1.7	1.94
5	(1,2)	1*(1.9*1-2)=-0.1	1.94
6	(2,4)	2*(1.9*2-4)=-0.2	1.97
7	(3,6)	3*(2.0*3-6)=-0.3	1.99
8	(4,8)	4*(2.0*4-8)=-0.1	2.00
9	(1,2)	1*(2.0*1-2)=0.0	2.00

- Consider the following pair (x, y) of points (1, 2), (2, 4), (3, 6), (4, 8)
- Let us try to fit a curve as follows $y = w \times x$ where w is initialized with 4, learning rate as 0.1
- MSE as cost function. Derivative will be $\frac{1}{4}\sum_{i} x_i (w \times x_i y_i)$

Step Derivative New w

- Consider the following pair (x, y) of points (1, 2), (2, 4), (3, 6), (4, 8)
- Let us try to fit a curve as follows $y = w \times x$ where w is initialized with 4, learning rate as 0.1
- MSE as cost function. Derivative will be $\frac{1}{4}\sum_{i} x_i (w \times x_i y_i)$

Step	Derivative	New w
1	15	2.5

- Consider the following pair (x, y) of points (1, 2), (2, 4), (3, 6), (4, 8)
- Let us try to fit a curve as follows $y = w \times x$ where w is initialized with 4, learning rate as 0.1
- MSE as cost function. Derivative will be $\frac{1}{4}\sum_{i} x_i (w \times x_i y_i)$

Step	Derivative	New w
1	15	2.5
2	3.75	2.13
GD example

- Consider the following pair (x, y) of points (1, 2), (2, 4), (3, 6), (4, 8)
- Let us try to fit a curve as follows $y = w \times x$ where w is initialized with 4, learning rate as 0.1
- MSE as cost function. Derivative will be $\frac{1}{4}\sum_{i} x_i (w \times x_i y_i)$

Step	Derivative	New w
1	15	2.5
2	3.75	2.13
3	0.94	2.03
4	0.23	2.01
5	0.06	2.00

Cost function

- Similar to other parametric model like linear models
- Parametric model defines distribution $p(y|x; \theta)$
- Principle of maximum likelihood is used (cross entropy between training data and model prediction)
- Instead of predicting the whole distribution of y, some statistic of y conditioned on x is predicted
- It can also contain regularization term

Logistic regression

- Responses may be qualitative (categorical)
 - Example: (Hours of study, pass/fail), (MRI scan, benign/malignant)
 - Output should be 0 or 1
- Predicting qualitative response is known as classification
- Linear regression does not help

Issues with linear regression

Logistic regression

Logistic model

- Linear regression model to represent non-normalized probability $p'(x) = w_0 + w_1 x$
- To avoid problem, we use function $p(x) = rac{e^{w_0 + w_1 x}}{1 + e^{w_0 + w_1 x}}$
- Quantity $\frac{p(x)}{1-p(x)} = e^{w_0 + w_1 x}$ is known as odds
- Taking log on both the sides, we get $\log\left(\frac{p(x)}{1-p(x)}\right) = w_0 + w_1 x$
- Coefficient can be determined using maximum likelihood

•
$$l(w_0, w_1) = \prod_{i:y_i=1} p(x_i) \prod_{j:y_j=0} p(x_j)$$

• Similar to linear regression except the output is mapped between 0 and 1 ie.

 $p(y|\mathbf{x}, \boldsymbol{\theta}) = \sigma(\boldsymbol{\theta}^T \mathbf{x})$

where
$$\sigma(x) = \frac{1}{1 + \exp(-x)}$$
 (Sigmoid function)

- Consider a set of *m* examples $\mathbb{X} = \{x^{(1)}, \dots, x^{(m)}\}$ drawn independently from the true but unknown data generating distribution $p_{data}(\mathbf{x})$
- Let $p_{model}(x; \theta)$ be a parametric family of probability distribution

- Consider a set of *m* examples $\mathbb{X} = \{x^{(1)}, \dots, x^{(m)}\}\$ drawn independently from the true but unknown data generating distribution $p_{data}(\mathbf{x})$
- Let $p_{model}(x; \theta)$ be a parametric family of probability distribution
- Maximum likelihood estimator for θ is defined as

$$\boldsymbol{\theta}_{ML} = \arg \max_{\boldsymbol{\theta}} p_{model}(\mathbb{X}; \boldsymbol{\theta}) = \arg \max_{\boldsymbol{\theta}} \prod_{i=1}^{m} p_{model}(\mathsf{x}^{(i)}; \boldsymbol{\theta})$$

- Consider a set of *m* examples $\mathbb{X} = \{x^{(1)}, \dots, x^{(m)}\}\$ drawn independently from the true but unknown data generating distribution $p_{data}(\mathbf{x})$
- Let $p_{model}(x; \theta)$ be a parametric family of probability distribution
- Maximum likelihood estimator for θ is defined as

$$\theta_{ML} = \arg \max_{\theta} p_{model}(\mathbb{X}; \theta) = \arg \max_{\theta} \prod_{i=1}^{m} p_{model}(\mathsf{x}^{(i)}; \theta)$$

• It can be written as $\theta_{ML} = \arg \max_{\theta} \sum_{i=1}^{m} \log p_{model}(\mathsf{x}^{(i)}; \theta)$

- Consider a set of *m* examples $\mathbb{X} = \{x^{(1)}, \dots, x^{(m)}\}\$ drawn independently from the true but unknown data generating distribution $p_{data}(\mathbf{x})$
- Let $p_{model}(x; \theta)$ be a parametric family of probability distribution
- Maximum likelihood estimator for θ is defined as

$$\boldsymbol{\theta}_{ML} = \arg \max_{\boldsymbol{\theta}} \boldsymbol{p}_{model}(\mathbb{X}; \boldsymbol{\theta}) = \arg \max_{\boldsymbol{\theta}} \prod_{i=1} \boldsymbol{p}_{model}(\mathsf{x}^{(i)}; \boldsymbol{\theta})$$

- It can be written as $\theta_{ML} = \arg \max_{\theta} \sum_{i=1}^{m} \log p_{model}(\mathbf{x}^{(i)}; \theta)$
- By dividing *m* we get $\theta_{ML} = \arg \max_{\theta} \mathbb{E}_{X \sim p_{data}} \log p_{model}(x; \theta)$

Maximum likelihood estimation (cont.)

• Minimizing dissimilarity between the empirical \hat{p}_{data} and model distribution p_{model} and it is measured by KL divergence

 $D_{\textit{KL}}(\hat{p}_{\textit{data}} \| p_{\textit{model}}) = \arg\min_{\theta} \mathbb{E}_{\mathsf{X} \sim \hat{p}_{\textit{data}}} \left[\log \hat{p}_{\textit{data}}(\mathsf{x}) - \log p_{\textit{model}}(\mathsf{x}; \theta) \right]$

Maximum likelihood estimation (cont.)

• Minimizing dissimilarity between the empirical \hat{p}_{data} and model distribution p_{model} and it is measured by KL divergence

 $D_{KL}(\hat{p}_{data} \| p_{model}) = \arg\min_{\theta} \mathbb{E}_{X \sim \hat{p}_{data}} \left[\log \hat{p}_{data}(x) - \log p_{model}(x; \theta) \right]$

• We need to minimize $-\arg\min_{\boldsymbol{\theta}} \mathbb{E}_{\mathsf{X} \sim \hat{p}_{data}} \log p_{model}(\mathsf{x}; \boldsymbol{\theta})$

Conditional log-likelihood

- In most of the supervised learning we estimate $P(y|x; \theta)$
- If X be the all inputs and Y be observed targets then conditional maximum likelihood estimator is $\theta_{ML} = \arg \max_{\theta} P(Y|X; \theta)$
- If the examples are assumed to be i.i.d then we can say

 $\boldsymbol{\theta}_{ML} = \arg \max_{\boldsymbol{\theta}} \sum_{i=1}^{m} \log P(\mathbf{y}^{(i)} | \mathbf{x}^{(i)}; \boldsymbol{\theta})$

- Instead of producing single prediction \hat{y} for a given x, we assume the model produces conditional distribution p(y|x)
- For infinitely large training set, we can observe multiple examples having the same x but different values of y
- Goal is to fit the distribution p(y|x)

- Instead of producing single prediction \hat{y} for a given x, we assume the model produces conditional distribution p(y|x)
- For infinitely large training set, we can observe multiple examples having the same x but different values of y
- Goal is to fit the distribution p(y|x)
- Let us assume, $p(y|\mathbf{x}) = \mathcal{N}(y; \hat{y}(\mathbf{x}; \mathbf{w}), \sigma^2)$

- Instead of producing single prediction \hat{y} for a given x, we assume the model produces conditional distribution p(y|x)
- For infinitely large training set, we can observe multiple examples having the same x but different values of y
- Goal is to fit the distribution p(y|x)
- Let us assume, $p(y|\mathbf{x}) = \mathcal{N}(y; \hat{y}(\mathbf{x}; \mathbf{w}), \sigma^2)$
- Since the examples are assumed to be i.i.d, conditional log-likelihood is given by

 $\sum_{i=1}^{m} \log p(\mathbf{y}^{(i)} | \mathbf{x}^{(i)}; \boldsymbol{\theta})$

- Instead of producing single prediction \hat{y} for a given x, we assume the model produces conditional distribution p(y|x)
- For infinitely large training set, we can observe multiple examples having the same x but different values of y
- Goal is to fit the distribution p(y|x)
- Let us assume, $p(\mathbf{y}|\mathbf{x}) = \mathcal{N}(\mathbf{y}; \hat{\mathbf{y}}(\mathbf{x}; \mathbf{w}), \sigma^2)$
- Since the examples are assumed to be i.i.d, conditional log-likelihood is given by

$$\sum_{i=1}^{m} \log p(\mathbf{y}^{(i)} | \mathbf{x}^{(i)}; \boldsymbol{\theta}) = -m \log \sigma - \frac{m}{2} \log(2\pi) - \sum_{i=1}^{m} \frac{\|\hat{\mathbf{y}}^{(i)} - \mathbf{y}^{(i)}\|^2}{2\sigma^2}$$

Learning conditional distributions

- Usually neural networks are trained using maximum likelihood. Therefore the cost function is negative log-likelihood. Also known as cross entropy between training data and model distribution
- Cost function $J(\boldsymbol{\theta}) = -\mathbb{E}_{X,Y \sim \hat{p}_{data}} \log p_{model}(y|x, \boldsymbol{\theta})$
- Uniform across different models
- Gradient of cost function is very much crucial
 - Large and predictable gradient can serve good guide for learning process
 - Function that saturates will have small gradient
 - Activation function usually produces values in a bounded zone (saturates)
 - Negative log-likelihood can overcome some of the problems
 - Output unit having exp function can saturate for high negative value
 - Log-likelihood cost function undoes the exp of some output functions

- Instead of learning the whole distribution $p(y|x; \theta)$, we want to learn one conditional statistics of y given x
 - For a predicting function $f(x; \theta)$, we would like to predict the mean of y

- Instead of learning the whole distribution $p(y|x; \theta)$, we want to learn one conditional statistics of y given x
 - For a predicting function $f(x; \theta)$, we would like to predict the mean of y
- Neural network can represent any function *f* from a very wide range of functions
- Range of function is limited by features like continuity, boundedness, etc.

- Instead of learning the whole distribution $p(y|x; \theta)$, we want to learn one conditional statistics of y given x
 - For a predicting function $f(x; \theta)$, we would like to predict the mean of y
- Neural network can represent any function *f* from a very wide range of functions
- Range of function is limited by features like continuity, boundedness, etc.
- Cost function becomes functional rather than a function

• Need to solve the optimization problem

 $f^* = \arg\min_{f} \mathbb{E}_{\mathsf{X},\mathsf{Y}\sim p_{data}} \|\mathsf{y} - f(\mathsf{x})\|^2$

- Need to solve the optimization problem
 - $f^* = \arg\min_{f} \mathbb{E}_{\mathsf{X}, \mathsf{Y} \sim \boldsymbol{p}_{data}} \|\mathsf{y} f(\mathsf{x})\|^2$
- Using calculus of variation, it gives $f^*(x) = \mathbb{E}_{\mathbf{Y} \sim p_{data}(\mathbf{y}|\mathbf{x})}[y]$
 - Mean of y for each value of x

• Need to solve the optimization problem

 $f^* = \arg\min_{f} \mathbb{E}_{\mathsf{X}, \mathsf{Y} \sim \boldsymbol{p}_{data}} \|\mathsf{y} - f(\mathsf{x})\|^2$

- Using calculus of variation, it gives $f^*(x) = \mathbb{E}_{Y \sim p_{data}(y|x)}[y]$
 - Mean of y for each value of x
- Using a different cost function $f^* = \arg\min_{f} \mathbb{E}_{X,Y \sim p_{data}} \|y f(x)\|_1$

• Need to solve the optimization problem

 $f^* = \arg\min_{f} \mathbb{E}_{\mathsf{X}, \mathsf{Y} \sim \boldsymbol{p}_{data}} \|\mathsf{y} - f(\mathsf{x})\|^2$

- Using calculus of variation, it gives $f^*(x) = \mathbb{E}_{Y \sim p_{data}(y|x)}[y]$
 - Mean of y for each value of x
- Using a different cost function $f^* = \arg\min_{e} \mathbb{E}_{X, Y \sim p_{data}} \|y f(x)\|_1$
 - Median of y for each value of x

Thank you!

• Let us consider functional $J[y] = \int_{x_1}^{x_2} L(x, y(x), y'(x)) dx$

- Let us consider functional $J[y] = \int_{-\infty}^{\infty} L(x, y(x), y'(x)) dx$
- Let J[y] has local minima at f. Therefore, we can say $J[f] \leq J[f + \varepsilon \eta]$
 - η is an arbitrary function of x such that $\eta(x_1) = \eta(x_2) = 0$ and differentiable

- Let us consider functional $J[y] = \int_{-\infty}^{x_2} L(x, y(x), y'(x)) dx$
- Let J[y] has local minima at f. Therefore, we can say $J[f] \leq J[f + \varepsilon \eta]$
 - η is an arbitrary function of x such that $\eta(x_1) = \eta(x_2) = 0$ and differentiable
- Let us assume $\Phi(\varepsilon) = J[f + \varepsilon \eta]$. Therefore, $\Phi'(0) \equiv \left. \frac{d\Phi}{d\varepsilon} \right|_{\varepsilon=0} = \int_{x_1}^{x_2} \left. \frac{dL}{d\varepsilon} \right|_{\varepsilon=0} dx$

- Let us consider functional $J[y] = \int_{-\infty}^{\infty} L(x, y(x), y'(x)) dx$
- Let J[y] has local minima at f. Therefore, we can say $J[f] \leq J[f + \varepsilon \eta]$
 - η is an arbitrary function of x such that $\eta(x_1) = \eta(x_2) = 0$ and differentiable
- Let us assume $\Phi(\varepsilon) = J[f + \varepsilon \eta]$. Therefore, $\Phi'(0) \equiv \left. \frac{d\Phi}{d\varepsilon} \right|_{\varepsilon=0} = \int_{x_1}^{x_2} \left. \frac{dL}{d\varepsilon} \right|_{\varepsilon=0} dx = 0$

- Let us consider functional $J[y] = \int_{-\infty}^{\infty} L(x, y(x), y'(x)) dx$
- Let J[y] has local minima at f. Therefore, we can say $J[f] \leq J[f + \varepsilon \eta]$
 - η is an arbitrary function of x such that $\eta(x_1) = \eta(x_2) = 0$ and differentiable
- Let us assume $\Phi(\varepsilon) = J[f + \varepsilon \eta]$. Therefore, $\Phi'(0) \equiv \left. \frac{d\Phi}{d\varepsilon} \right|_{\varepsilon=0} = \int_{x_1}^{x_2} \left. \frac{dL}{d\varepsilon} \right|_{\varepsilon=0} dx = 0$

• Now we can say,
$$\frac{dL}{d\varepsilon} = \frac{\partial L}{\partial y} \frac{dy}{d\varepsilon} + \frac{\partial L}{\partial y'} \frac{dy}{d\varepsilon}$$

- Let us consider functional $J[y] = \int_{-\infty}^{\infty} L(x, y(x), y'(x)) dx$
- Let J[y] has local minima at f. Therefore, we can say $J[f] \leq J[f + \varepsilon \eta]$
 - η is an arbitrary function of x such that $\eta(x_1) = \eta(x_2) = 0$ and differentiable
- Let us assume $\Phi(\varepsilon) = J[f + \varepsilon \eta]$. Therefore, $\Phi'(0) \equiv \left. \frac{d\Phi}{d\varepsilon} \right|_{0} = \int_{-\infty}^{x_2} \left. \frac{dL}{d\varepsilon} \right|_{0} dx = 0$
- Now we can say, $\frac{dL}{d\varepsilon} = \frac{\partial L}{\partial y}\frac{dy}{d\varepsilon} + \frac{\partial L}{\partial y'}\frac{dy'}{d\varepsilon}$
- As we have $y = f + \varepsilon \eta$ and $y' = f' + \varepsilon \eta'$, therefore, $\frac{dL}{d\varepsilon}$

- Let us consider functional $J[y] = \int_{-\infty}^{\infty} L(x, y(x), y'(x)) dx$
- Let J[y] has local minima at f. Therefore, we can say $J[f] \leq J[f + \varepsilon \eta]$
 - η is an arbitrary function of x such that $\eta(x_1) = \eta(x_2) = 0$ and differentiable
- Let us assume $\Phi(\varepsilon) = J[f + \varepsilon \eta]$. Therefore, $\Phi'(0) \equiv \left. \frac{d\Phi}{d\varepsilon} \right|_{0} = \int_{-\infty}^{x_2} \left. \frac{dL}{d\varepsilon} \right|_{0} dx = 0$
- Now we can say, $\frac{dL}{d\varepsilon} = \frac{\partial L}{\partial y} \frac{dy}{d\varepsilon} + \frac{\partial L}{\partial y'} \frac{dy'}{d\varepsilon}$
- As we have $y = f + \varepsilon \eta$ and $y' = f' + \varepsilon \eta'$, therefore, $\frac{dL}{d\varepsilon} = \frac{\partial L}{\partial y} \eta + \frac{\partial L}{\partial y'} \eta'$

Calculus of variations (contd.)

• Now we have

$$\int_{x_1}^{x_2} \frac{dL}{d\varepsilon} \bigg|_{\varepsilon=0} dx = \int_{x_1}^{x_2} \left(\frac{\partial L}{\partial f} \eta + \frac{\partial L}{\partial f'} \eta' \right) dx$$

Calculus of variations (contd.)

• Now we have

$$\int_{x_1}^{x_2} \frac{dL}{d\varepsilon} \bigg|_{\varepsilon=0} dx = \int_{x_1}^{x_2} \left(\frac{\partial L}{\partial f} \eta + \frac{\partial L}{\partial f'} \eta' \right) dx = \int_{x_1}^{x_2} \left(\frac{\partial L}{\partial f} \eta - \eta \frac{d}{dx} \frac{\partial L}{\partial f'} \right) dx + \frac{\partial L}{\partial f'} \eta \bigg|_{x_1}^{x_2}$$

Calculus of variations (contd.)

• Now we have

$$\int_{x_1}^{x_2} \frac{dL}{d\varepsilon} \Big|_{\varepsilon=0} dx = \int_{x_1}^{x_2} \left(\frac{\partial L}{\partial f} \eta + \frac{\partial L}{\partial f'} \eta' \right) dx = \int_{x_1}^{x_2} \left(\frac{\partial L}{\partial f} \eta - \eta \frac{d}{dx} \frac{\partial L}{\partial f'} \right) dx + \frac{\partial L}{\partial f'} \eta \Big|_{x_1}^{x_2}$$
Hence $\int_{x_1}^{x_2} \eta \left(\frac{\partial L}{\partial f} - \frac{d}{dx} \frac{\partial L}{\partial f'} \right) dx = 0$
Calculus of variations (contd.)

• Now we have

$$\int_{x_1}^{x_2} \frac{dL}{d\varepsilon} \Big|_{\varepsilon=0} dx = \int_{x_1}^{x_2} \left(\frac{\partial L}{\partial f} \eta + \frac{\partial L}{\partial f'} \eta' \right) dx = \int_{x_1}^{x_2} \left(\frac{\partial L}{\partial f} \eta - \eta \frac{d}{dx} \frac{\partial L}{\partial f'} \right) dx + \frac{\partial L}{\partial f'} \eta \Big|_{x_1}^{x_2} dx$$

• Hence
$$\int_{x_1}^{x_2} \eta \left(\frac{\partial L}{\partial f} - \frac{d}{dx} \frac{\partial L}{\partial f'} \right) dx = 0$$

• Euler-Lagrange equation $\frac{\partial L}{\partial f} - \frac{d}{dx} \frac{\partial L}{\partial f'} = 0$

• Let us consider distance between two points $A[y] = \int_{x_1}^{x_2} \sqrt{1 + [y'(x)]^2} dx$

•
$$y'(x) = \frac{dy}{dx}$$
, $y_1 = f(x_1)$, $y_2 = f(x_2)$

• Let us consider distance between two points $A[y] = \int_{x_1}^{x_2} \sqrt{1 + [y'(x)]^2} dx$

•
$$y'(x) = \frac{dy}{dx}$$
, $y_1 = f(x_1)$, $y_2 = f(x_2)$
• We have, $\frac{\partial L}{\partial f} - \frac{d}{dx}\frac{\partial L}{\partial f'} = 0$ where $L = \sqrt{1 + [f'(x)]^2}$

.

• Let us consider distance between two points $A[y] = \int_{x_1}^{x_2} \sqrt{1 + [y'(x)]^2} dx$

•
$$y'(x) = \frac{dy}{dx}$$
, $y_1 = f(x_1)$, $y_2 = f(x_2)$
• We have, $\frac{\partial L}{\partial f} - \frac{d}{dx}\frac{\partial L}{\partial f'} = 0$ where $L = \sqrt{1 + [f'(x)]^2}$

• As f does not appear explicitly in L, hence $\frac{d}{dx}\frac{\partial L}{\partial f'} = 0$

• Let us consider distance between two points $A[y] = \int_{x_1}^{x_2} \sqrt{1 + [y'(x)]^2} dx$

•
$$y'(x) = \frac{dy}{dx}$$
, $y_1 = f(x_1)$, $y_2 = f(x_2)$
• We have, $\frac{\partial L}{\partial f} - \frac{d}{dx}\frac{\partial L}{\partial f'} = 0$ where $L = \sqrt{1 + [f'(x)]^2}$

• As f does not appear explicitly in L, hence $\frac{d}{dx}\frac{\partial L}{\partial f'} = 0$

• Now we have,
$$\frac{d}{dx} \frac{f'(x)}{\sqrt{1 + [f'(x)]^2}} = 0$$

Deep Learning

• Taking derivative we get $\frac{d^2 f}{dx^2} \cdot \frac{1}{\left[\sqrt{1 + [f'(x)]^2}\right]^3} = 0$ • Therefore we have, $\frac{d^2 f}{dx^2} = 0$

- Taking derivative we get $\frac{d^2 f}{dx^2} \cdot \frac{1}{\left[\sqrt{1 + [f'(x)]^2}\right]^3} = 0$ • Therefore we have, $\frac{d^2f}{dx^2} = 0$
- Hence we have f(x) = mx + b with $m = \frac{y_2 y_1}{x_2 x_1}$ and $b = \frac{x_2y_1 x_1y_2}{x_2 x_1}$