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Multilayer neural network
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Deep feedforward networks
• Also known as feedforward neural network or multilayer perceptron

• Goal of such network is to approximate some function f ∗

• For classifier, x is mapped to category y ie. y = f ∗(x)
• A feedforward network maps y = f(x;θ) and learns θ for which the result is the best

function approximation
• Information flows from input to intermediate to output

• No feedback, directed acyclic graph
• For general model, it can have feedback and known as recurrent neural network

• Typically it represents composition of functions
• Three functions f (1), f (2), f (3) are connected in chain
• Overall function realized is f(x) = f (3)(f (2)(f (1)(x)))
• The number of layers provides the depth of the model

• Goal of NN is not to model brain accurately!
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Issues with linear FFN
• Fit well for linear and logistic regression
• Convex optimization technique may be used
• Capacity of such function is limited
• Model cannot understand interaction between any two variables
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Overcome issues of linear FFN
• Transform x (input) into ϕ(x) where ϕ is nonlinear transformation

• How to choose ϕ?
• Use a very generic ϕ of high dimension

• Enough capacity but may result in poor generalization
• Very generic feature mapping usually based on principle of local smoothness
• Do not encode enough prior information

• Manually design ϕ

• Require domain knowledge
• Strategy of deep learning is to learn ϕ
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Goal of deep learning
• We have a model y = f(x;θ,w) = ϕ(x;θ)Tw
• We use θ to learn ϕ

• w and ϕ determines the output. ϕ defines the hidden layer
• It looses the convexity of the training problem but benefits a lot
• Representation is parameterized as ϕ(x,θ)

• θ can be determined by solving optimization problem
• Advantages

• ϕ can be very generic
• Human practitioner can encode their knowledge to designing ϕ(x;θ)
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Example
• Let us choose XOR function
• Target function is y = f ∗(x) and our model provides y = f(x;θ)
• Learning algorithm will choose the parameters θ to make f close to f ∗

• Target is to fit output for X = {[0, 0]T, [0, 1]T, [1, 0]T, [1, 1]T}
• This can be treated as regression problem and MSE error can be chosen as loss function

(J(θ) = 1

4

∑
x∈X

(f ∗(x)− f(x;θ))2)

• We need to choose f(x;θ) where θ depends on w and b
• Let us consider a linear model f(x;w, b) = xTw + b
• Solving these, we get w = 0 and b = 1

2
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Simple FFN with hidden layer
• Let us assume that the hidden unit h computes f (1)(x;W, c)

• In the next layer y = f (2)(h;w, b) is computed
• Complete model f(x;W, c,w, b) = f (2)(f (1)(x))
• Suppose f (1)(x) = WTx and f 2(h) = hTw then f(x) = wTWTx
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Simple FFN with hidden layer (contd.)
• We need to have nonlinear function to describe the features
• Usually NN have affine transformation of learned parameters fol-

lowed by nonlinear activation function
• Let us use h = g(WTx + c)
• Let us use ReLU as activation function g(z) = max{0, z}
• g is chosen element wise hi = g(xTW:,i + ci)
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Simple FFN with hidden layer (contd.)
• Complete network is f(x;W, c,w, b) = wT max{0,WTx + c}+ b

• A solution for XOR problem can be as follows

• W =

[
1 1

1 1

]
, c =

[
0

−1

]
, w =

[
1

−2

]
, b = 0

• Now we have

• X =


0 0

1 0

0 1

1 1

, XW =


0 0

1 1

1 1

2 2

, add bias c


0 −1

1 0

1 0

2 1

, compute h


0 0

1 0

1 0

2 1

, multiply

with w


0

1

1

0
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Gradient based learning
• Similar to machine learning tasks, gradient descent based learning is used

• Need to specify optimization procedure, cost function and model family
• For NN, model is nonlinear and function becomes nonconvex

• Usually trained by iterative, gradient based optimizer
• Solved by using gradient descent or stochastic gradient descent (SGD)
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Gradient descent
• For a function y = f(x), derivative (slope at point x) of it is f ′(x) = dy

dx
• A small change in the input can cause output to move to a value given by f(x+ϵ) ≈ f(x)+ϵf ′(x)
• We need to take a jump so that y reduces (assuming minimization problem)
• We can say that f(x − ϵsign(f ′(x))) is less than f(x)
• For multiple inputs partial derivatives are used ie. ∂

∂xi
f(x)

• Gradient vector is represented as ∇xf(x)
• Gradient descent proposes a new point as x′ = x − ϵ∇xf(x) where ϵ is the learning rate
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Example
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Example: Variation of MSE wrt w

 24

 26

 28

 30

 32

 34

 36

 38

 40

 42

 44

 0  5  10  15  20  25

M
S

E

w



De
ep

Le
ar
ni
ng

15

Example: Best fit
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Minimization of MSE: Gradient descent
• Assuming MSE(train) = J(w1,w2)

• Target is to min
w1,w2

J(w1,w2)

• Approach
• Start with some w1,w2

• Keep modifying w1,w2 so that J(w1,w2) reduces till the desired accuracy is achieved

• Algorithm

• Repeat the following until convergence wj = wj −
∂

∂wj
J(w1,w2)

• Gradient descent proposes a new point as w′ = w − ϵ∇wf(w) where ϵ is the learning rate
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Stochastic gradient descent
• Large training set are necessary for good generalization
• Cost function used for optimization is J(θ) = 1

m
∑m

i=1 L(x(i), y(i),θ)
• Gradient descent requires ∇θJ(θ) = 1

m
∑m

i=1∇θL(x(i), y(i),θ)

• Computation cost is O(m)

• For SGD, gradient is an expectation estimated from a small sample known as minibatch
(B = {x(1), . . . , x(m′)})

• Estimated gradient is g =
1

m′

m′∑
i=1

∇θL(x(i), y(i),θ)

• New point will be θ = θ − ϵg
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Step Point Derivative New w

1 (1,2) 1*(4.0*1-2)=2.0 3.80
2 (2,4) 2*(3.8*2-4)=7.2 3.08
3 (3,6) 3*(3.1*3-6)=9.7 2.11
4 (4,8) 4*(2.1*4-8)=1.7 1.94
5 (1,2) 1*(1.9*1-2)=-0.1 1.94
6 (2,4) 2*(1.9*2-4)=-0.2 1.97
7 (3,6) 3*(2.0*3-6)=-0.3 1.99
8 (4,8) 4*(2.0*4-8)=-0.1 2.00
9 (1,2) 1*(2.0*1-2)=0.0 2.00
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SGD example
• Consider the following pair (x, y) of points - (1, 2), (2, 4), (3, 6), (4, 8)
• Let us try to fit a curve as follows y = w× x where w is initialized with 4, learning rate as 0.1
• MSE as cost function. Derivative will be x(w × x − y)
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Cost function
• Similar to other parametric model like linear models
• Parametric model defines distribution p(y|x;θ)
• Principle of maximum likelihood is used (cross entropy between training data and model

prediction)
• Instead of predicting the whole distribution of y, some statistic of y conditioned on x is

predicted
• It can also contain regularization term
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Logistic regression
• Responses may be qualitative (categorical)

• Example: ⟨Hours of study, pass/fail⟩, ⟨MRI scan, benign/malignant⟩
• Output should be 0 or 1

• Predicting qualitative response is known as classification
• Linear regression does not help
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Issues with linear regression
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Logistic regression
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Logistic model
• Linear regression model to represent non-normalized probability p′(x) = w0 + w1x

• To avoid problem, we use function p(x) = ew0+w1x

1 + ew0+w1x

• Quantity p(x)
1−p(x) = ew0+w1x is known as odds

• Taking log on both the sides, we get log
(

p(x)
1− p(x)

)
= w0 + w1x

• Coefficient can be determined using maximum likelihood
• l(w0,w1) =

∏
i:yi=1

p(xi)
∏

j:yj=0

p(xj)

• Similar to linear regression except the output is mapped between 0 and 1 ie.

p(y|x,θ) = σ(θTx)

where σ(x) = 1

1 + exp(−x) (Sigmoid function)
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Maximum likelihood estimation
• Consider a set of m examples X = {x(1), . . . , x(m)} drawn independently from the true but

unknown data generating distribution pdata(x)
• Let pmodel(x;θ) be a parametric family of probability distribution

• Maximum likelihood estimator for θ is defined as

θML = arg max
θ

pmodel(X;θ) = arg max
θ

m∏
i=1

pmodel(x(i);θ)

• It can be written as θML = arg max
θ

m∑
i=1

log pmodel(x(i);θ)

• By dividing m we get θML = arg max
θ

EX∼pdata log pmodel(x;θ)
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Maximum likelihood estimation (cont.)
• Minimizing dissimilarity between the empirical p̂data and model distribution pmodel and it is

measured by KL divergence
DKL(p̂data∥pmodel) = arg min

θ
EX∼p̂data [log p̂data(x)− log pmodel(x;θ)]

• We need to minimize − arg min
θ

EX∼p̂data log pmodel(x;θ)
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Conditional log-likelihood
• In most of the supervised learning we estimate P(y|x;θ)
• If X be the all inputs and Y be observed targets then conditional maximum likelihood

estimator is θML = arg max
θ

P(Y|X;θ)

• If the examples are assumed to be i.i.d then we can say

θML = arg max
θ

m∑
i=1

log P(y(i)|x(i);θ)
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Linear regression as maximum likelihood
• Instead of producing single prediction ŷ for a given x, we assume the model produces condi-

tional distribution p(y|x)
• For infinitely large training set, we can observe multiple examples having the same x but

different values of y
• Goal is to fit the distribution p(y|x)

• Let us assume, p(y|x) = N (y; ŷ(x;w), σ2)

• Since the examples are assumed to be i.i.d, conditional log-likelihood is given by
m∑

i=1

log p(y(i)|x(i);θ) = −m logσ − m
2

log(2π)−
m∑

i=1

∥ŷ(i) − y(i)∥2
2σ2
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Learning conditional distributions
• Usually neural networks are trained using maximum likelihood. Therefore the cost function

is negative log-likelihood. Also known as cross entropy between training data and model
distribution

• Cost function J(θ) = −EX,Y∼p̂data log pmodel(y|x,θ)
• Uniform across different models
• Gradient of cost function is very much crucial

• Large and predictable gradient can serve good guide for learning process
• Function that saturates will have small gradient

• Activation function usually produces values in a bounded zone (saturates)
• Negative log-likelihood can overcome some of the problems

• Output unit having exp function can saturate for high negative value
• Log-likelihood cost function undoes the exp of some output functions
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Learning conditional statistics
• Instead of learning the whole distribution p(y|x;θ), we want to learn one conditional statistics

of y given x
• For a predicting function f(x;θ), we would like to predict the mean of y

• Neural network can represent any function f from a very wide range of functions
• Range of function is limited by features like continuity, boundedness, etc.
• Cost function becomes functional rather than a function
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Learning conditional statistics
• Need to solve the optimization problem

f ∗ = arg min
f

EX,Y∼pdata∥y − f(x)∥2

• Using calculus of variation, it gives f ∗(x) = EY∼pdata(y|x)[y]
• Mean of y for each value of x

• Using a different cost function f ∗ = arg min
f

EX,Y∼pdata∥y − f(x)∥1
• Median of y for each value of x
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Thank you!
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Calculus of variations
• Let us consider functional J[y] =

∫ x2

x1
L(x, y(x), y ′(x)) dx

• Let J[y] has local minima at f. Therefore, we can say J[f] ≤ J[f + εη]

• η is an arbitrary function of x such that η(x1) = η(x2) = 0 and differentiable

• Let us assume Φ(ε) = J[f + εη]. Therefore, Φ′(0) ≡ dΦ
dε

∣∣∣∣
ε=0

=

∫ x2

x1

dL
dε

∣∣∣∣
ε=0

dx = 0

• Now we can say, dL
dε =

∂L
∂y

dy
dε +

∂L
∂y ′

dy ′

dε
• As we have y = f + εη and y ′ = f ′ + εη′, therefore, dL

dε =
∂L
∂y η +

∂L
∂y ′ η

′
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Calculus of variations (contd.)
• Now we have∫ x2

x1

dL
dε

∣∣∣∣
ε=0

dx =

∫ x2

x1

(
∂L
∂f η +

∂L
∂f ′ η

′
)

dx

=

∫ x2

x1

(
∂L
∂f η − η

d
dx

∂L
∂f ′

)
dx + ∂L

∂f ′ η
∣∣∣∣x2
x1

• Hence
∫ x2

x1
η

(
∂L
∂f − d

dx
∂L
∂f ′

)
dx = 0

• Euler-Lagrange equation ∂L
∂f − d

dx
∂L
∂f ′ = 0



De
ep

Le
ar
ni
ng

35

Calculus of variations (contd.)
• Now we have∫ x2

x1

dL
dε

∣∣∣∣
ε=0

dx =

∫ x2

x1

(
∂L
∂f η +

∂L
∂f ′ η

′
)

dx =

∫ x2

x1

(
∂L
∂f η − η

d
dx

∂L
∂f ′

)
dx + ∂L

∂f ′ η
∣∣∣∣x2
x1

• Hence
∫ x2

x1
η

(
∂L
∂f − d

dx
∂L
∂f ′

)
dx = 0

• Euler-Lagrange equation ∂L
∂f − d

dx
∂L
∂f ′ = 0



De
ep

Le
ar
ni
ng

35

Calculus of variations (contd.)
• Now we have∫ x2

x1

dL
dε

∣∣∣∣
ε=0

dx =

∫ x2

x1

(
∂L
∂f η +

∂L
∂f ′ η

′
)

dx =

∫ x2

x1

(
∂L
∂f η − η

d
dx

∂L
∂f ′

)
dx + ∂L

∂f ′ η
∣∣∣∣x2
x1

• Hence
∫ x2

x1
η

(
∂L
∂f − d

dx
∂L
∂f ′

)
dx = 0

• Euler-Lagrange equation ∂L
∂f − d

dx
∂L
∂f ′ = 0



De
ep

Le
ar
ni
ng

35

Calculus of variations (contd.)
• Now we have∫ x2

x1

dL
dε

∣∣∣∣
ε=0

dx =

∫ x2

x1

(
∂L
∂f η +

∂L
∂f ′ η

′
)

dx =

∫ x2

x1

(
∂L
∂f η − η

d
dx

∂L
∂f ′

)
dx + ∂L

∂f ′ η
∣∣∣∣x2
x1

• Hence
∫ x2

x1
η

(
∂L
∂f − d

dx
∂L
∂f ′

)
dx = 0

• Euler-Lagrange equation ∂L
∂f − d

dx
∂L
∂f ′ = 0



De
ep

Le
ar
ni
ng

36

Example
• Let us consider distance between two points A[y] =

∫ x2

x1

√
1 + [y ′(x)]2 dx

• y ′(x) = dy
dx , y1 = f(x1) , y2 = f(x2)

• We have, ∂L
∂f − d

dx
∂L
∂f ′ = 0 where L =

√
1 + [f ′(x)]2

• As f does not appear explicitly in L, hence d
dx

∂L
∂f ′ = 0

• Now we have, d
dx

f ′(x)√
1 + [f ′(x)]2

= 0
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Example
• Taking derivative we get d2f

dx2 · 1[√
1 + [f ′(x)]2

]3 = 0

• Therefore we have, d2f
dx2 = 0

• Hence we have f(x) = mx + b with m =
y2 − y1
x2 − x1

and b =
x2y1 − x1y2

x2 − x1
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