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Introduction
• Successful application of deep learning

• Require knowledge of different techniques available
• Need to know the principle how it works

• Common issues faced
• Require more data
• Increase or decrease model complexity
• Choice of regularizer
• Optimization model
• Debug procedure

• All are time consuming
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Recommended design process
• Determine the goals

• Choice of error metric
• Target value for error metric

• It depends on the problem at hand

• Setup a working end-to-end pipeline
• Find out bottlenecks and components having poor performance

• Overfitting, underfitting, defect in data or software etc.
• Repeatedly make incremental changes

• Gather new data
• Adjust hyperparameter
• Try with different algorithms
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Performance metric
• Determine your goal and error metric
• Achieving absolute zero error is nearly impossible
• Limited by finite data

• More data can be collected after it is in operation
• Data collection is a tedious process and requires money, time, human suffering
• For benchmark, no extra data should be collected

• Performance level
• Academic setting — use previously published results
• Real world — We need to have some information for it to be safe, cost effective, appealing

to users
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Performance metric
• Performance metric and cost function are different

• Precision — Fraction of detection reported by the model that are correct
• Recall — Fraction of true events that are detected

• PR-curve — Threshold required
• Precision in y-axis and recall in x-axis

• To have single number for comparison F-score is used (F =
2pr

p + r)

• Coverage — Fraction of examples for which the machine learning system able to produce
response
• Accuracy vs Coverage trade-off
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Selection of baseline
• Depending on the complexity of the problem, deep learning may be required
• If the problem is ”AI-Complete” such as object identification then deep learning may be a

good choice
• Initially general category model is selected
• Supervised learning with fixed input

• Feed forward network with fully connected layers
• Input has known topological structure like image

• CNN can be chosen
• Input or output is a sequence

• Gated recurrent network is preferred
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Choice of optimization
• SGD with momentum with decay rate
• Batch normalization can help (specially for CNN or network with sigmoidal non-linearities)
• For small batch size it is better to have regularization at the start
• Early stopping is good
• Dropout is a good regularizer
• Start with already existing model
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Data
• Check for performance on training data

• If it is not acceptable (and no more data is required)
• Increase the model size
• Add more layers, more units
• Tune learning rate
• Check optimization algorithm

• Probably problem with training data!
• Acceptable in training data, check performance in test data

• Not acceptable in test data
• May require more data, reduce model size
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Selection of hyperparameters
• Has significant effect on the performance

• Time
• Memory
• Quality

• To choose it manually, understanding of the hyperparameter is required
• For automatic selection, more computation are required
• For some hyperparameters, generalization error follow U shape curve
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Manual hyperparameter tuning
• Need to understand the relationship between hyperparameter and

• Training error
• Generalization error
• Computational resource

• Need to understand effective capacity

• Target of hyperparameter is to minimize generalization error
• Effective capacity

• Representational capacity of model
• Learning algorithm to minimize cost function
• Degree to which the cost function and training procedure regularize the model
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Learning rate
• Controls the effective capacity in a very complicated manner

• Effective capacity is highest when learning rate is correct
• When learning rate is very high, training error may increase
• When learning rate us small, training will be slower and may prematurely stuck with high

training error
• Tuning other parameters requires monitoring of training and test error
• If training error is higher than the desired target error

• Increase capacity
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Hyperparameters
Hyperparameters Capacity Reason Caveats
Number of hidden
units

Increase More representational
capacity

Time and memory will
increase

Learning rate Need to
tune opti-
mally

Improper learning rate
may result in poor per-
formance

Convolution kernel
width

Increase Increases the number of
parameters

May require 0 padding.
Memory and time will in-
crease

Implicit 0 padding Increase Keeps representation
size large

Memory and time will in-
crease

Weight decay Decrease Model parameters can
become large

Dropout rate Decrease Ensemble
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Automatic hyperparameter optimization
• Neural network is good when lot of hyperparameters are available
• Manual tuning of hyperparameters is good but requires experience
• Start point may be known for some cases (manual tuning is possible)
• Hyperparameter optimization

• Hyperparameter will have their own hyperparameters
• Easier to choose secondary hyperparameters
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Grid search
• Common practice is to perform grid search when number of hyperparameter is three or less
• Smallest and largest values are chosen conservatively
• Picks the value in log scale
• Performs well when applied repeatedly

• Refinement of ranges
• Computation cost is very high
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Debugging strategies
• Visualize the model in action
• Visualize the worst mistakes
• Reason about software using training and test error
• Fit a tiny data set
• Compare back-propagated derivatives
• Monitor histogram of activations and gradients


