CS365: Deep Learning

Deep Reinforcement Learning

Arijit Mondal

Dept. of Computer Science & Engineering Indian Institute of Technology Patna arijit@iitp.ac.in

Deep Learning

- Given k slot machines, an action is to pull an arm of one of the machines
- At each time step t the agent chooses and action at among the k actions and receives reward r+
- Taking action a is pulling arm i which gives reward r(a) with probability p_i
- Goal is to maximize the total expected return
- Expected reward for action a is $Q(a) = \mathbb{E}[r_t|a_t = a]$
 - We can estimate the value of $Q_t(a)$ of action a at time t
 - For example, mean reward for each action

reward r+

- Given k slot machines, an action is to pull an arm of one of the machines
- At each time step t the agent chooses and action at among the k actions and receives
- Taking action a is pulling arm i which gives reward r(a) with probability p_i
- Goal is to maximize the total expected return
- Expected reward for action a is $Q(a) = \mathbb{E}[r_t|a_t = a]$
- ullet We can estimate the value of $Q_t(a)$ of action a at time t

choosing the action with the largest mean reward

- For example, mean reward for each action
- A greedy takes the best estimate at time t, exploiting knowledge $a_t = \arg \max_a Q_t(a)$,

Interaction with environment

Reinforcement learning

- Set of actions that the learner will make in order to maximize its profit
- Action may not only affect the next situation but also subsequent situation
 - Trial and error search
 - Delayed reward
- A learning agent is interacting with environment to achieve a goal
- Agent needs to have idea of state so that it can take right action
- Three key aspects observation, action, goal

Reinforcement vs supervised learning

Reinforcement learning

- It is different from supervised learning
 - Learning from examples provided by a knowledgeable external supervisor
 - Not adequate for learning from interaction
- In interaction problem it is often impractical to obtain examples of desired behavior that are correct and representative of all situations
 - Trade-off between exploration and exploitation
 - To improve reward it must prefer effective action from the past (exploit)
 - To discover such action it has to try unselected actions (explore)
 - Exploit and exploration cannot be pursued exclusively
- Agent interacts with uncertain environment

	When to use RL
	Data in the form of trajectories
	Need to make a sequence of decision
	Observe (partial, noisy) feedback to state or choice of action
2 Deep Learning	

- A non-greedy action is explored
- We can choose greedily most of the time, sometime non-greedily
- For example, with small probability ϵ we choose greedily and $(1-\epsilon)$ probability non-greedily
- Exploration vs Exploitation
- For each action a do: Q(a) = 0, N(a) = 0 number of times action is chosen
- For each time step do:

 - Q(a) = Q(a) + (r(a) Q(a))/N(a)

State machines

- *S* set of possible state
- *X* set of possible inputs
- A transition function $f: S \times X \rightarrow S$
- Y set of possible outputs
- A mapping $g: S \rightarrow Y$

Markov process

- In multi-armed bandit, actions were stateless
- In many scenarios action will depend on past states
- Also the transition from one state to another state can have uncertainty
- Markov decision process assumes that probability of a state s_{t+1} depends only on s_t and a_t , not on any other previous states or actions

Markovian decision process

- *S* set of states
- A set of actions
- $Pr(s_t|s_{t-1},a_{t-1})$ Probabilistic effects
- r_t reward function
- ullet μ_t initial state distribution

• Markov property: The future state depends only on the current state

$$Pr(s_t|s_{t-1},\ldots,s_0) = Pr(s_t|s_{t-1})$$

Markov process: Example

- ullet Policy: $\pi:S o A$ a mapping from state to action
- For every state we need to choose an action
- Example:
 - π_A always take the slow (red) action
 - π_B always take the fast (blue) action
 - π_C if fallen take slow action, fast otherwise
 - π_D if moving take fast action, slow otherwise
- A policy need not be deterministic π_E all states take slow action with probability 0.3
- and fast action with probability 0.7
- It may be viewed as rule book

Reward

- Each action is associated with some reward
 - ullet Return is the sum of discounted rewards $g_t = r_{t+1} + \gamma r_{t+2} + \ldots + r_T = r_{t+1} + \gamma g_{t+1}$

State action diagram

- The agent starts from a root node s, takes action a
- Action a is chosen by some policy
- State-action diagram represents an episode (s, a, r, s')

Elements of RL

- Agent
- Environment
- Policy The way agent behaves at a given time
 - Mapping of state-action pair to state
 - Can use look up table or search method
 - Core of reinforcement learning problem
 - a de mana atara antian matura a atanda mumba.
 - It maps state-action pair to a single number
 - Objective of RL agent is to maximize total reward
 - Defines bad or good events
 - Must be unalterable by agent, however policy can be changed

Reward function — Defines the goal in reinforcement learning problem

Elements of RL (contd.)

- Value function
 - Specifies what is good in long run
 - Value of a state is the total amount of reward an agent can expect to accumulate over future starting from the state
 - Indicates long term desirability of states
 - The action tries to move to a state of highest value (not highest reward)
 - Rewards are mostly given by the environment
 - Value must be estimated or reestimated from the sequence of observation
 - Need efficient method to find values
 - Evolutionary methods (genetic algorithm, simulated annealing) search directly in the space of policies without applying value function

Mimics the behavior of environment

Elements of RL (contd.)

- Given state and action, model might predict resultant next state and next reward
- Every RL system uses trial and search methodology to learn

- State Value Function what is the value of a policy?
- The agent is allowed to make actions and collects rewards
- ullet $V_\pi^h(s)$ state value function wrt to π with h horizon. $V_\pi^0=0$

- State Value Function what is the value of a policy?
- The agent is allowed to make actions and collects rewards
- $V_{\pi}^{h}(s)$ state value function wrt to π with h horizon. $V_{\pi}^{0}=0$
- This can be computed using induction
 - For h = 1, $V_{\pi}^{1}(s) = R(s, \pi(s)) + V_{\pi}^{0}(s) = R(s, a) + 0$

- State Value Function what is the value of a policy?
- The agent is allowed to make actions and collects rewards
- $V_{\pi}^{h}(s)$ state value function wrt to π with h horizon. $V_{\pi}^{0}=0$
- This can be computed using induction
- For h = 1, $V_{\pi}^{1}(s) = R(s, \pi(s)) + V_{\pi}^{0}(s) = R(s, a) + 0$

 - $\bullet \ \ \text{For} \ \ h=2, \ \ V_{\pi}^2(\mathbf{s})=R(\mathbf{s},\pi(\mathbf{s}))+\sum T(\mathbf{s},\pi(\mathbf{s}),\mathbf{s}')R(\mathbf{s}',\pi(\mathbf{s}'))$

- State Value Function what is the value of a policy?
- The agent is allowed to make actions and collects rewards
- $V_{\pi}^{h}(s)$ state value function wrt to π with h horizon. $V_{\pi}^{0}=0$
- This can be computed using induction
- For h = 1, $V_{\pi}^{1}(s) = R(s, \pi(s)) + V_{\pi}^{0}(s) = R(s, a) + 0$

 - For h = 2, $V_{\pi}^{2}(s) = R(s, \pi(s)) + \sum T(s, \pi(s), s')R(s', \pi(s'))$
 - \bullet For any h, $V_\pi^h(s) = R(s,\pi(s)) + \sum \mathit{T}(s,\pi(s),s') V_\pi^{h-1}(s')$

- State Value Function what is the value of a policy?
- The agent is allowed to make actions and collects rewards
- ullet $V_{\pi}^h(s)$ state value function wrt to π with h horizon. $V_{\pi}^0=0$
- This can be computed using induction
- For h = 1, $V_{\pi}^{1}(s) = R(s, \pi(s)) + V_{\pi}^{0}(s) = R(s, a) + 0$
- For n = 1, $V_{\pi}^{*}(s) = R(s, \pi(s)) + V_{\pi}^{*}(s) = R(s, a) + 0$
 - For h = 2, $V_{\pi}^{2}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') R(s', \pi(s'))$
 - For any h, $V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') V_{\pi}^{h-1}(s')$
- Goal is to compute $V_{\pi}(s) = \mathbb{E}_{\pi}[g_t|s_t = s] = \mathbb{E}_{\pi}[\sum_k \gamma^k r_{t+k+1}|s_t = s]$

- State Value Function what is the value of a policy?
- The agent is allowed to make actions and collects rewards
- $V_{\pi}^{h}(s)$ state value function wrt to π with h horizon. $V_{\pi}^{0}=0$
- This can be computed using induction
- For h = 1, $V_{\pi}^{1}(s) = R(s, \pi(s)) + V_{\pi}^{0}(s) = R(s, a) + 0$
- For h = 2, $V_{\pi}^{2}(s) = R(s, \pi(s)) + \sum T(s, \pi(s), s')R(s', \pi(s'))$
 - ullet For any h, $V_\pi^h(s)=R(s,\pi(s))+\sum {\it T}(s,\pi(s),s')V_\pi^{h-1}(s')$
- Goal is to compute $V_{\pi}(s) = \mathbb{E}_{\pi}[g_t|s_t = s] = \mathbb{E}_{\pi}[\sum_{\iota} \gamma^k r_{t+k+1}|s_t = s]$
- γ discount factor. $\gamma = 0$ is myopic, 1 means farsighted
- $V_{\pi}(s) = \mathbb{E}[R_0 + \gamma R_1 + \dots | \pi, s_0 = s] = R(s, \pi(s)) + \gamma \sum_{s} T(s, \pi(s), s') V_{\pi}(s')$

- Action Value Function similar to state value function, it maps state-action to value
- $Q_{\pi}^h(s,a)$ state-action value function wrt to π with h horizon at state s with action a. $Q_{\pi}^0(s,a)=0$
- This can be computed using induction
- For h = 1, $Q_{\pi}^{1}(s, a) = R(s, a) + Q_{\pi}^{0}(s, 0) = R(s, a) + 0$

Action value function

- Action Value Function similar to state value function, it maps state-action to value
- $Q_{\pi}^{h}(s,a)$ state-action value function wrt to π with h horizon at state s with action a. $Q_{\pi}^{0}(s,a)=0$
 - This can be computed using induction
 - For h = 1, $Q_{\pi}^{1}(s, a) = R(s, a) + Q_{\pi}^{0}(s, 0) = R(s, a) + 0$

 - For h = 2, $Q_{\pi}^{2}(s, a) = R(s, a) + \sum_{s'} T(s, \pi(s), s') \max_{a'} R(s', a')$

Action value function

- Action Value Function similar to state value function, it maps state-action to value
- $Q_{\pi}^{h}(s,a)$ state-action value function wrt to π with h horizon at state s with action a. $Q_{\pi}^{0}(s,a)=0$
- This can be computed using induction
- For h = 1, $Q_{\pi}^{1}(s, a) = R(s, a) + Q_{\pi}^{0}(s, 0) = R(s, a) + 0$
- For h = 2, $Q_{\pi}^{2}(s, a) = R(s, a) + \sum_{s} T(s, \pi(s), s') \max_{a'} R(s', a')$
- For any h, $Q_{\pi}^{h}(s,a) = R(s,a) + \sum_{s} T(s,\pi(s),s') \max_{a'} Q_{\pi}^{h-1}(s',a')$
- For n states, m actions, h horizon, computation time is O(nmh)
- Goal is to compute $Q_{\pi}(s,a) = \mathbb{E}_{\pi}[g_t|s_t=s,a_t=a] = \mathbb{E}_{\pi}[\sum_k \gamma^k r_{t+k+1}|s_t=s,a_t=a]$

- Model based it tries to learn transition function, reward function
 - Start with a policy, interact with environment, learn world model
 - Use the world model to train the agent
 - More suitable for complex environment
 - Needs more computational resources
 - Model free finds policy or directly estimates value function or both
 - Q-learning
 - Actor-critic learning
 - More suitable for real time applications
 - Less likely to succeed in complex environment

- State representation green, blue, red sequence
- State representation number of reds, greens, blues

Bellman expectation for state value function

• Expected return starting from s following policy π satisfies recursive relation

$$V_{\pi}(s) = \mathbb{E}_{\pi}[g_t|s_t = s]$$

Bellman expectation for state value function

• Expected return starting from s following policy π satisfies recursive relation

$$egin{array}{lcl} V_{\pi}(s) & = & \mathbb{E}_{\pi}[g_t|s_t=s] \ & = & \mathbb{E}_{\pi}\left[\sum_k \gamma^k r_{t+k+1}|s_t=s
ight] \end{array}$$

Bellman expectation for state value function

• Expected return starting from s following policy π satisfies recursive relation

$$V_{\pi}(s) = \mathbb{E}_{\pi}[g_{t}|s_{t} = s]$$

$$= \mathbb{E}_{\pi}\left[\sum_{k} \gamma^{k} r_{t+k+1}|s_{t} = s\right]$$

$$= \mathbb{E}_{\pi}\left[r_{t+1} + \gamma \sum_{k} \gamma^{k} r_{t+k+2}|s_{t} = s\right]$$

Bellman expectation for state value function

• Expected return starting from s following policy π satisfies recursive relation

$$V_{\pi}(s) = \mathbb{E}_{\pi}[g_t|s_t = s]$$

$$= \mathbb{E}_{\pi}\left[\sum_{k} \gamma^k r_{t+k+1}|s_t = s\right]$$

$$= \mathbb{E}_{\pi}\left[r_{t+1} + \gamma \sum_{k} \gamma^k r_{t+k+2}|s_t = s\right]$$

$$= \mathbb{E}_{\pi}[r_{t+1} + \gamma g_{t+1}|s_t = s]$$

• Expected return starting from s following policy π satisfies recursive relation

$$V_{\pi}(s) = \mathbb{E}_{\pi}[g_t|s_t = s]$$

$$= \mathbb{E}_{\pi}\left[\sum_{k} \gamma^k r_{t+k+1}|s_t = s\right]$$

$$= \mathbb{E}_{\pi} \left[r_{t+1} + \gamma \sum_{k} \gamma^{k} r_{t+k+2} | s_{t} = s \right]$$

$$= \mathbb{E}_{\pi} [r_{t+1} + \gamma g_{t+1} | s_{t} = s]$$

$$= \mathbb{E}_{\pi}[r_{t+1} + \gamma g_{t+1} | s_t = s]$$

$$= \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s', r|s, a) (r + \gamma \mathbb{E}_{\pi}[g_{t+1} | s_{t+1} = s'])$$

Bellman expectation for state value function

• Expected return starting from s following policy π satisfies recursive relation

Expected return starting from s following policy
$$\pi$$
 satisfies recursive relation $V_{\pi}(s) = \mathbb{E}_{\pi}[g_t|s_t = s]$

$$= \mathbb{E}_{\pi}\left[\sum_k \gamma^k r_{t+k+1}|s_t = s\right]$$

$$= \mathbb{E}_{\pi} \left[r_{t+1} + \gamma \sum_{k} \gamma^{k} r_{t+k+2} | s_{t} = s \right]$$

$$= \mathbb{E}_{\pi} [r_{t+1} + \gamma g_{t+1} | s_{t} = s]$$

$$= \mathbb{E}_{\pi}[r_{t+1} + \gamma g_{t+1} | s_t = s]$$

$$\sum_{\tau(s+s)} \sum_{\tau(s+s)} r(s)$$

$$= \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s', r|s, a) (r + \gamma \mathbb{E}_{\pi}[g_{t+1}|s_{t+1} = s'])$$

$$= \sum_{a} \pi(a|s) \sum_{s', r} p(s', r|s, a) (r + \gamma V_{\pi}(s'))$$

$$= \sum \pi(a|s) \sum \sum p(s', s')$$

average

average

ullet Expected return starting from s following policy π satisfies recursive relation

$$= \mathbb{E}_{\pi} \left[\sum_{k} \gamma^{k} r_{t+k+1} | s_{t} = s \right]$$

$$= \mathbb{E}_{\pi} \left[r_{t+1} + \gamma \sum_{k} \gamma^{k} r_{t+k+2} | s_{t} = s \right]$$

$$= \mathbb{E}_{\pi} [r_{t+1} + \gamma g_{t+1} | s_{t} = s]$$

$$= \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s', r|s, a) (r + \gamma \mathbb{E}_{\pi} [g_{t+1} | s_{t+1} = s'])$$

$$= \sum_{a} \pi(a|s) \sum_{s', r} p(s', r|s, a) (r + \gamma V_{\pi}(s'))$$

• In matrix form $V_{\pi}^{h+1} = r + TV_{\pi}^{h}$, T - transition matrix

 $V_{\pi}(s) = \mathbb{E}_{\pi}[g_t|s_t = s]$

ullet Expected return starting from s following policy π satisfies recursive relation

$$Q_{\pi}(s, a) = \mathbb{E}_{\pi}[g_t|s_t = s, a_t = a]$$

Bellman expectation for state-action value function

• Expected return starting from s following policy π satisfies recursive relation

$$Q_{\pi}(s, a) = \mathbb{E}_{\pi}[g_t|s_t = s, a_t = a]$$

$$= \mathbb{E}_{\pi}\left[\sum_{s} c_s^k r_{s+s+s}\right] s$$

$$= \mathbb{E}_{\pi} \left[\sum_{k} \gamma^{k} r_{t+k+1} | s, a \right]$$

• Expected return starting from s following policy π satisfies recursive relation

$$Q_{\pi}(s, a) = \mathbb{E}_{\pi}[g_t|s_t = s, a_t = a]$$

$$= \mathbb{E}_{\pi}\left[\sum_k \gamma^k r_{t+k+1}|s, a\right]$$

$$= \mathbb{E}_{\pi}[r_{t+1} + \gamma Q(s', a')|s, a]$$

$$= \mathbb{E}_{\pi}[r_{t+1} + \gamma Q(s', a')|s, a]$$

Bellman expectation for state-action value function

• Expected return starting from s following policy π satisfies recursive relation

$$Q_{\pi}(s, a) = \mathbb{E}_{\pi}[g_t|s_t = s, a_t = a]$$

$$= \mathbb{E}_{\pi}\left[\sum_{k} \gamma^k r_{t+k+1}|s, a\right]$$

$$= \mathbb{E}_{\pi}[r_{t+1} + \gamma Q(s', a')|s, a]$$

$$\mathbb{E}_{\pi}[r_{t+1} + \gamma Q(s', a') | s, a]$$

$$= \mathbb{E}_{\pi}[r_{t+1} + \gamma Q(s', a')|s, a]$$

$$= \sum_{s'} p(s', r|s, a) \left(r + \gamma \sum_{s'} \pi(a'|s') Q_{\pi}(s', a')\right)$$

$$= \sum_{s'} p(s', r|s, a) \left(r + \gamma \sum_{s'} \pi(a'|s') Q_{\pi}(s', a')\right)$$

$$|s,a'|$$
, $|s,a|$

$$+1 + \gamma Q(s', a')|s, a]$$

$$\sum_{k} \gamma^{k} r_{t+k+1} | s, a$$

$$= 1 + \gamma Q(s', a') | s, a$$

$$= 1 + \gamma Q(s', a') | s, a$$

$$a_t - a_1$$
 $+k+1|s,a|$

average

average

Optimal policy

• A policy π is better than or equal to a policy π' if its expected return is greater than or equal to that of π' for all all states: $\pi \geq \pi'$ iff $V_{\pi}(s) \geq V_{\pi'}(s) \quad \forall s$

- A policy π is better than or equal to a policy π' if its expected return is greater than or
- equal to that of π' for all all states: $\pi \geq \pi'$ iff $V_{\pi}(s) \geq V_{\pi'}(s) \quad \forall s$ ullet Optimal value function: $V_* = \max_{ au} V_\pi(s) = \max_{ au} \mathbb{E}_\pi[g_t|s_t = s]$
- Optimal state-action value: $Q_*(s,a) = \max Q_\pi(s,a)$

- A policy π is better than or equal to a policy π' if its expected return is greater than or
- ullet Optimal value function: $V_* = \max V_\pi(s) = \max \mathbb{E}_\pi[g_t|s_t = s]$

equal to that of π' for all all states: $\pi \geq \pi'$ iff $V_{\pi}(s) \geq V_{\pi'}(s) \quad \forall s$

- ullet Optimal state-action value: $Q_*(s,a) = \max_{\pi} Q_{\pi}(s,a)$
- $ilde{\pi}$ Bellman optimal equation for state value: $V_*(s) = \max_s \sum_s p(s',r|s,a)(r+\gamma V_*(s'))$
- Bellman optimal equation for state-action value:
- $Q_*(s,a) = \sum_{s} p(s',r|s,a)(r+\gamma \max_{a'} Q_*(s',a'))$

Example

p = 1, r = 1

Moving

 $p=\frac{4}{5}, r=2$

Example

•
$$V_*^1(f) = 0, V_*^1(s) = 1, V_*^1(m) = \frac{7}{5}$$

• $V_*^2(f) = \max\{-\frac{1}{5} + \frac{2}{5} \times 1, 0 + 0\} = \frac{1}{5},$

$$V_*^2(s) = \max\{1 + \frac{7}{5}, \frac{4}{5} + \frac{3}{5} \times \frac{7}{5}\} = \frac{12}{5},$$

Example

p = 1, r = 1

p = 1, r = 1

Moving

 $p=\frac{4}{5}, r=2$

- $V^1_*(f) = 0, V^1_*(s) = 1, V^1_*(m) = \frac{7}{5}$
- $V_*^2(f) = \max\{-\frac{1}{5} + \frac{2}{5} \times 1, 0 + 0\} = \frac{1}{5},$

$$V_*^2(s) = \max\{1 + \frac{7}{5}, \frac{4}{5} + \frac{3}{5} \times \frac{7}{5}\} = \frac{12}{5},$$

$$V_*^2(m) = \max\{1 + \frac{7}{5}, \frac{7}{5} + \frac{4}{5} \times \frac{7}{5}\} = 2.5$$

$$V_*(5) = \max\{1 + \frac{7}{5}, \frac{7}{5} + \frac{4}{5} \times \frac{7}{5}\} = \frac{7}{5},$$

$$V_*^2(m) = \max\{1 + \frac{7}{5}, \frac{7}{5} + \frac{4}{5} \times \frac{7}{5}\} = 2.52$$

•
$$V_*^1(f) = 0, V_*^1(s) = 1, V_*^1(m) = \frac{7}{5}$$

• $V_*^2(f) = \max\{-\frac{1}{5} + \frac{2}{5} \times 1, 0 + 0\} = \frac{1}{5}$

$$V_*^2(s) = \max\{1 + \frac{7}{5}, \frac{4}{5} + \frac{3}{5} \times \frac{7}{5}\} = \frac{12}{5},$$

$$V_*^2(m) = \max\{1 + \frac{7}{5}, \frac{7}{5} + \frac{4}{5} \times \frac{7}{5}\} = 2.5$$

 $V_*^2(m) = \max\{1 + \frac{7}{5}, \frac{7}{5} + \frac{4}{5} \times \frac{7}{5}\} = 2.52$ • $V_{*}^{8}(f) = 0.88, V_{*}^{8}(s) = 3.52, V_{*}^{8}(m) = 3.52$

Standing

 $p = \frac{3}{5}, r = 2$

p = 1, r = 1

p = 1, r = 1

Moving

 $p=\frac{4}{5}, r=2$

p = 1, r = 0Fallen

 $V(s) = \sum_{a} \pi(a|s) \sum_{s',a} p(s',r|s,a) (r + \gamma V(s'))$

v = V(s)

until $\Delta < \epsilon$

 $\Delta = \max\{\Delta, \|\mathbf{v} - \mathbf{V}(\mathbf{s})\|\}$

Policy iteration

• Steps for determining policy:

```
initialize V(s), \pi(s)
do:
   Run iterative policy evaluation (compute V)
   convergence = True
   for s \in S do:
      a=\pi(s)
      \pi(s) = \arg\max_{a} \sum_{s',a} p(s',r|s,a)(r+\gamma V(s'))
      if a \neq \pi(s) then: convergence = False
until convergence
```

Model based RL

- To model the transition relation and rewards based on states, actions and rewards experi-
- Let the agent make action and observes the states and rewards
- Transition can be estimated as: $T(s, a, s') = \frac{N(s, a, s') + 1}{N(s, a) + |S|}$, where
- N(s, a, s') number of times the agent was in s, moves to s' on action s,
- $N(s, a) = \sum_{s'} N(s, a, s')$

enced, (s, a, r, s')

- Reward function can be estimated as: $R(s, a) = \frac{\sum_{(s,a)} r(s, a)}{M(s, a)}$

- It considers experiences is divided into episodes that terminates
- Reward value can be computed only when after termination
- Example: incremental mean computation
 - ullet Mean at time step t is updated based on current value x_t and mean at time (t-1)
 - $\mu_t = \frac{1}{t} \sum_{i=1}^{t} x_i = \mu_{t-1} + \frac{1}{t} (x_t \mu_{t-1})$
- ullet For MDP, $\emph{V}(\emph{s}_t) = \emph{V}(\emph{s}_t) + lpha(\emph{g}_t \emph{V}(\emph{s}_t))$, \emph{g}_t actual return

Monte Carlo prediction

```
• Steps are as follows initialize V(s) = 0, return(s) = \emptyset do:
```

```
Generate episode of \pi for s \in S do: g = \text{return following the first occurence of } s
```

 $return(s) = return(s) \cup g$ $V(s) = \mu(return(s))$

until convergence

Temporal difference prediction

• Steps for determining V(s) are as follows

initialize V(s) = 0do:

Generate episode of π for $s \in S$ do:

a = action given by π at s

Take action a, observe r, s'

Take action
$$a$$
, observe r, s'

$$V(s) = V(s) + \alpha(r + \gamma V(s') - V(s))$$

$$s = s'$$

until s is terminal

Q-Learning

- It is a model free learning method, directly estimates the a value function
- - $Q(s, a) = R(s, a) + \gamma \sum_{s'} T(s, a, s') \max_{a'} Q(s', a')$
- ullet In Q-learning, we estimate $\mathit{Q}(\mathit{s},\mathit{a}) = \mathit{Q}(\mathit{s},\mathit{a}) + lpha \left(\mathit{r} + \gamma \max_{\mathit{a'}} \mathit{Q}(\mathit{s'},\mathit{a'}) \mathit{Q}(\mathit{s},\mathit{a}) \right)$

- In model based we estimate T and R using value iteration. Given T and R we can compute

Q-Learning • It is a model free learning method, directly estimates the a value function • In model based we estimate T and R using value iteration. Given T and R we can compute

$$Q(s,a) = R(s,a) + \gamma \sum_{s'} T(s,a,s') \max_{a'} Q(s',a')$$
• In Q-learning, we estimate $Q(s,a) = Q(s,a) + \alpha \left(r + \gamma \max_{a'} Q(s',a') - Q(s,a)\right)$

Steps: initialize Q(s, a) = 0; Select start state s_0

a =select an action based on ϵ -greedy strategy

$$q = Q(s, a)$$
Take action a to get reward r and next state s'

 $Q(s, a) = Q(s, a) + \alpha (r + \gamma \max_{a'} Q(s', a') - Q(s, a))$ $\Delta = \max\{\Delta, \|q - Q(s, a)\|\}; \quad s = s'$

until
$$\Delta$$
 is less than a given threshold

- ullet In Q-learning, we estimate $\mathit{Q}(\mathit{s},\mathit{a}) = \mathit{Q}(\mathit{s},\mathit{a}) + lpha \left(\mathit{r} + \gamma \max_{\mathit{a'}} \mathit{Q}(\mathit{s'},\mathit{a'}) \mathit{Q}(\mathit{s},\mathit{a})
 ight)$
- In SARSA, we estimate $Q(s, a) = Q(s, a) + \alpha (r + \gamma Q(s', a') Q(s, a))$
 - It needs (s, a, r, s', a') tuple for learning

• On policy vs Off policy

State value function approximation • A neural network may be used to estimate $V_{\theta}(s) \approx V_{\pi}(s)$ or $Q_{\theta}(s,a) \approx Q_{\pi}(s,a)$ or a policy

- $p_{\theta}(a|s)$ • Our goal is to find θ such that MSE between $V_{\pi}(s)$ and $V_{\theta}(s)$ is minimized

- Our goal is to find θ such that MSE between $V_{\pi}(s)$ and $V_{\theta}(s)$ is minimized $J(\theta) = \frac{1}{2}\mathbb{E}_s[(V_{\pi}(s) V_{\theta}(s))^2]$
- arning

 $p_{\theta}(a|s)$

- ullet Our goal is to find heta such that MSE between $V_\pi(s)$ and $V_\theta(s)$ is minimized
- $J(\theta) = \frac{1}{2} \mathbb{E}_{s}[(V_{\pi}(s) V_{\theta}(s))^{2}] = \frac{1}{2S} \sum_{s \in S} [(V_{\pi}(s) V_{\theta}(s))^{2}] \approx \sum_{s \in S} \mu(s)[(V_{\pi}(s) V_{\theta}(s))^{2}]$

- A neural network may be used to estimate $V_{\theta}(s) \approx V_{\pi}(s)$ or $Q_{\theta}(s,a) \approx Q_{\pi}(s,a)$ or a policy $p_{\theta}(a|s)$
- Our goal is to find θ such that MSE between $V_{\pi}(s)$ and $V_{\theta}(s)$ is minimized

•
$$J(\theta) = \frac{1}{2} \mathbb{E}_{s}[(V_{\pi}(s) - V_{\theta}(s))^{2}] = \frac{1}{2S} \sum_{s \in S} [(V_{\pi}(s) - V_{\theta}(s))^{2}] \approx \sum_{s \in S} \mu(s)[(V_{\pi}(s) - V_{\theta}(s))^{2}]$$

- Gradient: $\nabla_{\theta} J(\theta) = -\mathbb{E}_s[(V_{\pi}(s) V_{\theta}(s))\nabla_{\theta} V_{\theta}(s)]$
- For gradient update: $\Delta \theta = -\alpha \nabla_{\theta} J(\theta) = \alpha \mathbb{E}_s[(V_{\pi}(s) V_{\theta}(s))\nabla_{\theta} V_{\theta}(s)]$

• A neural network may be used to estimate $V_{\theta}(s) \approx V_{\pi}(s)$ or $Q_{\theta}(s,a) \approx Q_{\pi}(s,a)$ or a policy $p_{\theta}(a|s)$

- ullet Our goal is to find heta such that MSE between $V_\pi(s)$ and $V_{ heta}(s)$ is minimized

•
$$J(\theta) = \frac{1}{2} \mathbb{E}_{s}[(V_{\pi}(s) - V_{\theta}(s))^{2}] = \frac{1}{2S} \sum_{s \in S} [(V_{\pi}(s) - V_{\theta}(s))^{2}] \approx \sum_{s \in S} \mu(s)[(V_{\pi}(s) - V_{\theta}(s))^{2}]$$

- Gradient: $\nabla_{\theta} J(\theta) = -\mathbb{E}_s[(V_{\pi}(s) V_{\theta}(s))\nabla_{\theta} V_{\theta}(s)]$
- For gradient update: $\Delta \theta = -\alpha \nabla_{\theta} J(\theta) = \alpha \mathbb{E}_s[(V_{\pi}(s) V_{\theta}(s))\nabla_{\theta} V_{\theta}(s)]$
- If we have single sample (like SGD), $\Delta \theta = \alpha \nabla_{\theta} J(\theta) = \alpha [(V_{\pi}(s) V_{\theta}(s)) \nabla_{\theta} V_{\theta}(s)]$

 $p_{\theta}(a|s)$

- A neural network may be used to estimate $V_{\theta}(s) \approx V_{\pi}(s)$ or $Q_{\theta}(s,a) \approx Q_{\pi}(s,a)$ or a policy
 - Our goal is to find θ such that MSE between $V_{\pi}(s)$ and $V_{\theta}(s)$ is minimized

•
$$J(\theta) = \frac{1}{2} \mathbb{E}_{s}[(V_{\pi}(s) - V_{\theta}(s))^{2}] = \frac{1}{2S} \sum_{s} [(V_{\pi}(s) - V_{\theta}(s))^{2}] \approx \sum_{s} \mu(s)[(V_{\pi}(s) - V_{\theta}(s))^{2}]$$

- Gradient: $\nabla_{\theta} J(\theta) = -\mathbb{E}_s[(V_{\pi}(s) V_{\theta}(s))\nabla_{\theta} V_{\theta}(s)]$
- For gradient update: $\Delta \theta = -\alpha \nabla_{\theta} J(\theta) = \alpha \mathbb{E}_{s}[(V_{\pi}(s) V_{\theta}(s))\nabla_{\theta} V_{\theta}(s)]$
- If we have single sample (like SGD), $\Delta\theta = \alpha \nabla_{\theta} J(\theta) = \alpha [(V_{\pi}(s) V_{\theta}(s)) \nabla_{\theta} V_{\theta}(s)]$ • For Monte Carlo: $\Delta \theta = \alpha [(g - V_{\theta}(s)) \nabla_{\theta} V_{\theta}(s)]$

- A neural network may be used to estimate $V_{\theta}(s) \approx V_{\pi}(s)$ or $Q_{\theta}(s,a) \approx Q_{\pi}(s,a)$ or a policy $p_{\theta}(a|s)$
 - ullet Our goal is to find heta such that MSE between $V_\pi(s)$ and $V_{ heta}(s)$ is minimized

•
$$J(\theta) = \frac{1}{2} \mathbb{E}_{s}[(V_{\pi}(s) - V_{\theta}(s))^{2}] = \frac{1}{2S} \sum_{s \in S} [(V_{\pi}(s) - V_{\theta}(s))^{2}] \approx \sum_{s \in S} \mu(s)[(V_{\pi}(s) - V_{\theta}(s))^{2}]$$

- Gradient: $\nabla_{\theta} J(\theta) = -\mathbb{E}_s[(V_{\pi}(s) V_{\theta}(s))\nabla_{\theta} V_{\theta}(s)]$
- For gradient update: $\Delta \theta = -\alpha \nabla_{\theta} J(\theta) = \alpha \mathbb{E}_{s}[(V_{\pi}(s) V_{\theta}(s))\nabla_{\theta} V_{\theta}(s)]$
- If we have single sample (like SGD), $\Delta\theta = \alpha \nabla_{\theta} J(\theta) = \alpha [(V_{\pi}(s) V_{\theta}(s)) \nabla_{\theta} V_{\theta}(s)]$
- For Monte Carlo: $\Delta \theta = \alpha [(g V_{\theta}(s)) \nabla_{\theta} V_{\theta}(s)]$
 - For Temporal Difference: $\Delta\theta = \alpha[(r + \gamma V_{\theta}(s') V_{\theta}(s))\nabla_{\theta}V_{\theta}(s)]$

- Need to estimate $Q_{\theta}(s, a)$
- Our goal is to find θ such that MSE between $Q_{\pi}(s,a)$ and $Q_{\theta}(s,a)$ is minimized
- $J(\theta) = \frac{1}{2} \mathbb{E}_{(s,a) \sim \pi} [(Q_{\pi}(s,a) Q_{\theta}(s,a))^2]$
- Gradient: $\nabla_{\theta} J(\theta) = -\mathbb{E}_{(s,a) \sim \pi}[(Q_{\pi}(s,a) Q_{\theta}(s,a))\nabla_{\theta}Q_{\theta}(s,a)]$

Action value function approximation

- Need to estimate $Q_{\theta}(s, a)$
- ullet Our goal is to find heta such that MSE between $Q_\pi(s,a)$ and $Q_ heta(s,a)$ is minimized

$$ullet J(heta) = rac{1}{2} \mathbb{E}_{(oldsymbol{s},oldsymbol{a}) \sim \pi} [(Q_{\pi}(oldsymbol{s},oldsymbol{a}) - Q_{ heta}(oldsymbol{s},oldsymbol{a}))^2]$$

- $\frac{2}{2} (3,a) \approx k \left(3, k \right) = \frac{1}{2} \left(3, k \right)$
- Gradient: $\nabla_{\theta} J(\theta) = -\mathbb{E}_{(s,a) \sim \pi}[(Q_{\pi}(s,a) Q_{\theta}(s,a))\nabla_{\theta}Q_{\theta}(s,a)]$
- For gradient update: $\Delta \theta = -\alpha \nabla_{\theta} J(\theta) = \alpha \mathbb{E}_s[(Q_{\pi}(s, \mathbf{a}) Q_{\theta}(s, \mathbf{a})) \nabla_{\theta} Q_{\theta}(s, \mathbf{a})]$

Action value function approximation

- Need to estimate $Q_{\theta}(s, a)$
- Our goal is to find θ such that MSE between $Q_{\pi}(s,a)$ and $Q_{\theta}(s,a)$ is minimized
- $J(\theta) = \frac{1}{2} \mathbb{E}_{(s,a) \sim \pi} [(Q_{\pi}(s,a) Q_{\theta}(s,a))^2]$
- Gradient: $\nabla_{\theta} J(\theta) = -\mathbb{E}_{(s,a) \sim \pi}[(Q_{\pi}(s,a) Q_{\theta}(s,a))\nabla_{\theta}Q_{\theta}(s,a)]$
- For gradient update: $\Delta \theta = -\alpha \nabla_{\theta} J(\theta) = \alpha \mathbb{E}_s[(Q_{\pi}(s, a) Q_{\theta}(s, a)) \nabla_{\theta} Q_{\theta}(s, a)]$
- If we have single sample, $\Delta\theta = \alpha \nabla_{\theta} J(\theta) = \alpha [(Q_{\pi}(s,a) Q_{\theta}(s,a)) \nabla_{\theta} Q_{\theta}(s,a)]$

Action value function approximation

- Need to estimate $Q_{\theta}(s, a)$
- ullet Our goal is to find heta such that MSE between $Q_\pi(s,a)$ and $Q_ heta(s,a)$ is minimized
- $\bullet J(\theta) = \frac{1}{2} \mathbb{E}_{(s,a) \sim \pi} [(Q_{\pi}(s,a) Q_{\theta}(s,a))^2]$
- Gradient: $\nabla_{\theta} J(\theta) = -\mathbb{E}_{(s,a) \sim \pi}[(Q_{\pi}(s,a) Q_{\theta}(s,a))\nabla_{\theta}Q_{\theta}(s,a)]$
- For gradient update: $\Delta \theta = -\alpha \nabla_{\theta} J(\theta) = \alpha \mathbb{E}_{s}[(Q_{\pi}(s, a) Q_{\theta}(s, a)) \nabla_{\theta} Q_{\theta}(s, a)]$
- If we have single sample, $\Delta\theta=\alpha\nabla_{\theta}J(\theta)=\alpha[(Q_{\pi}(s,a)-Q_{\theta}(s,a))\nabla_{\theta}Q_{\theta}(s,a)]$
 - For Monte Carlo: $\Delta \theta = \alpha [(g Q_{\theta}(s, a)) \nabla_{\theta} Q_{\theta}(s, a)]$
 - For Temporal Difference: $\Delta\theta = \alpha[(r + \gamma Q_{\theta}(s', a') Q_{\theta}(s, a))\nabla_{\theta}Q_{\theta}(s, a)]$
 - Can diverge using neural network due to
 - Correlation between samples
 - Non-stationary target

Experience replay

- Neural network needs to learn from states, action, reward information ie. $e_i = (s_i, a_i, r_i, s_i')$
 - Successive samples are usually correlated
 - Need to use replay buffer that stores e_i
- ullet Sample from the buffer when updating Q values

Neural fitted *Q*-iteration (NFQ)

- Our goal is to find θ such that MSE between $Q_*(s,a)$ and $Q_{\theta}(s,a)$ is minimized
- Loss: $J(\theta) = \frac{1}{2} \mathbb{E}_{(s,a) \sim \pi} [(Q_*(s,a) Q_{\theta}(s,a))^2]$
- For gradient update: $\Delta \theta = \alpha [(Q_*(s, a) Q_\theta(s, a)) \nabla_\theta Q_\theta(s, a)]$
- Since we do not know $Q_*(s,a)$, optimal action value can be approximated as $Q_*(s,a) \approx$ $r + \gamma \max_{a'} Q_{\theta}(s', a')$
- Hence network parameters updated by $\Delta \theta = \alpha \left[r + \gamma \max_{\mathbf{a}'} Q_{\theta}(\mathbf{s}', \mathbf{a}') Q_{\theta}(\mathbf{s}, \mathbf{a}) \right] \nabla_{\theta} Q_{\theta}(\mathbf{s}, \mathbf{a})$

Deep Q-Network (DQN)

- It uses a second neural network
- In NFQ, we set the target as $y_{NFQ} = r + \gamma \max_{a'} Q_{\theta}(s', a')$
- In case of DQN, we use $y_{DQN} = r + \gamma \max_{a'} Q_{\theta-}(s', a')$
- DQN minimizes MSE loss

$$L(\theta_i) = \mathbb{E}_{(s,a,r,s') \sim D_i} \left[(y_i - Q_{\theta_i}(s,a))^2 \right] = \mathbb{E}_{(s,a,r,s') \sim D_i} \left[r + \gamma \max_{a'} Q_{\theta_-}(s',a') - Q_{\theta_i}(s,a))^2 \right]$$

• Parameters θ_- of the target network $Q_{\theta_-}(s',a')$ are frozen for multiple steps, θ_i are updated using SGD $\bullet \ \nabla_{\theta_i} L(\theta_i) = \mathbb{E}_{(s,a,r,s') \sim D_i} \left[(r + \gamma \max_{a'} Q_{\theta_-}(s',a') - Q_{\theta_i}(s,a)) \nabla_{\theta_i} Q_{\theta_i}(s,a) \right]$

Steps are as follows:

```
initialize (1) D=\emptyset - empty reply buffer, (2) online Q_{\theta} network parameters with \theta with
random values, (3) set for target network Q_{\theta_-} parameters \theta_- = \theta, (4) start state s = s_0
repeat:
    for each episode do:
       run \epsilon-greedy policy based Q_{\theta} network
       collect transitions (s, a, r, s') in D
    Select a sample (s, a, r, s') from D
    a = Q_{\theta}(s, a):
    Q_{\theta}(s, a) = Q_{\theta}(s, a) + \alpha(r + \gamma \max_{a'} Q_{\theta}(s', a') - Q_{\theta}(s, a))
    \Delta = \max\{\Delta, \|\mathbf{q} - \mathbf{Q}_{\theta}(\mathbf{s}, \mathbf{a})\|\}
    s = s'
```

update $\theta_{-} = \theta$ every k number of episodes

until stopping criteria

Deep Learning

Example: Recycling Robot

- A robot does one of the following at each time step
 - Actively search for a can
 - Remain stationary and wait for someone to bring a can
 - Go back to home base to recharge battery

Recycling Robot: Transition relation

5	s'	а	p(s' s,a)	r(s, a, s')
high	high	search	α	r _{search}
high	low	search	$1-\alpha$	r _{search}
low	high	search	$1-\beta$	-3
low	low	search	β	r _{search}
high	high	wait	1	r _{wait}
high	low	wait	0	r _{wait}
low	high	wait	0	r _{wait}
low	low	wait	1	r _{wait}
low	high	recharge	1	0
low	low	recharge	0	0

47

Example

Optimal value computation

$$V^*(h) = \max \left\{ \begin{array}{l} p(h|h,s)[r(h,s,h) + \gamma V^*(h)] + p(l|h,s)[r(h,s,l) + \gamma V^*(l)], \\ p(h|h,w)[r(h,w,h) + \gamma V^*(h)] + p(l|h,w)[r(h,w,l) + \gamma V^*(l)] \end{array} \right\}$$

$$V^*(h) = \max \left\{ \begin{array}{l} p(h|h,s)[r(h,s,h) + \gamma V^*(h)] + p(h|h,s)[r(h,s,h) + \gamma V^*(h)] \\ p(h|h,w)[r(h,w,h) + \gamma V^*(h)] + p(h|h,w)[r(h,w,h) + \gamma V^*(h)] \end{array} \right.$$

$$V^*(h) = \max \left\{ \begin{array}{l} p(h|h, w)[r(h, w, h) + \gamma V^*(h)] + p(h|h, w)[r(h, w, h) + \gamma V^*(h)] \\ p(h|h, w)[r(h, w, h) + \gamma V^*(h)] + p(h|h, w)[r(h, w, h) + \gamma V^*(h)] \end{array} \right\}$$

 $V^*(h) = \max\{r_s + \gamma[\alpha V^*(h) + (1-\alpha)V^*(h)], r_w + \gamma V^*(h)\}$

$$V'(h) = \max \left\{ p(h|h, w)[r(h, w, h) + \gamma V^*(h)] + p(l|h, w)[r(h, w, l) + \gamma V^*(h)] \right\}$$

 $V^*(I) = \max \left\{ \begin{array}{l} \beta r_s - 3(1-\beta) + \gamma [(1-\beta)V^*(h) + \beta V^*(I)] \\ r_w + \gamma V^*(I), \\ \gamma V^*(h) \end{array} \right\}$