CS365: Deep Learningl

Deep Reinforcement Learning

Deep Learning

Arijit Mondal
Dept. of Computer Science & Engineering
Indian Institute of Technology Patna

arijit@iitp.ac.in




Multi Armed Bandit

Deep Learning

Given k slot machines, an action is to pull an arm of one of the machines

At each time step t the agent chooses and action a; among the k actions and receives
reward r;

Taking action a is pulling arm i which gives reward r(a) with probability p;
Goal is to maximize the total expected return

Expected reward for action ais Q(a) = E[r|a; = a

We can estimate the value of Q:(a) of action a at time t

e For example, mean reward for each action



Multi Armed Bandit

Deep Learning

Given k slot machines, an action is to pull an arm of one of the machines

At each time step t the agent chooses and action a; among the k actions and receives

reward r;

Taking action a is pulling arm i which gives reward r(a) with probability p;
Goal is to maximize the total expected return

Expected reward for action ais Q(a) = E[r|a; = a

We can estimate the value of Q:(a) of action a at time t

e For example, mean reward for each action

A greedy takes the best estimate at time t, exploiting knowledge a; = arg max, Q(a),
choosing the action with the largest mean reward



Interaction with environment

Deep Learning

Dynamic

System
G (o>

Learning
Agent




Reinforcement learning

Deep Learning

Set of actions that the learner will make in order to maximize its profit
Action may not only affect the next situation but also subsequent situation

e Trial and error search
e Delayed reward

A learning agent is interacting with environment to achieve a goal
Agent needs to have idea of state so that it can take right action

Three key aspects — observation, action, goal



Reinforcement vs supervised learning

Deep Learning

Training signals (Desired output)

L

Inputs ——

Supervised
Learning

— Outputs

'
'

Inputs ——>

Reinforcement
Learning

Training signals (Rewards) -
Environment

™ Outputs (Action)




Reinforcement learning

Deep Learning

It is different from supervised learning

e Learning from examples provided by a knowledgeable external supervisor

e Not adequate for learning from interaction

In interaction problem it is often impractical to obtain examples of desired behavior that are
correct and representative of all situations

Trade-off between exploration and exploitation

e To improve reward it must prefer effective action from the past (exploit)
e To discover such action it has to try unselected actions (explore)
e Exploit and exploration cannot be pursued exclusively

Agent interacts with uncertain environment



When to use RL

Deep Learning

e Data in the form of trajectories
e Need to make a sequence of decision

e Observe (partial, noisy) feedback to state or choice of action



Examples

Deep Learning

Chess player eg. games
Robotics
Adaptive controller

All involve interaction between active decision making agent and its environment



e-Greedy Approach

Deep Learning

A non-greedy action is explored
We can choose greedily most of the time, sometime non-greedily
For example, with small probability € we choose greedily and (1—¢) probability non-greedily

Exploration vs Exploitation

For each action a do: Q(a) =0, N(a) = 0 number of times action is chosen
For each time step do:

argmax Q(a)  with probability (1 — ¢)

® g—
random action with probability €

N(a) = N(a) + 1
e Qa) = Q(a) + (r(a) — Q(a))/N(a)



State machines

Deep Learning

S - set of possible state

X - set of possible inputs

A transition function f: Sx X — S
Y - set of possible outputs

A mapping g: S— Y

Slow

Fast Moving
Fast

» Standing

Slow



Markov process

Deep Learning

In multi-armed bandit, actions were stateless
In many scenarios action will depend on past states
Also the transition from one state to another state can have uncertainty

Markov decision process assumes that probability of a state s;;; depends only on s; and
as, not on any other previous states or actions




Markovian decision process

Deep Learning

S — set of states
A — set of actions

Pr(s¢|s;—1,a:—1) — Probabilistic effects

r- — reward function

[t — initial state distribution 4

Markov property: The future state depends only on the current state

Pr(s|se-1, ..., s0) = Pr(se|se—1)

784
7 7

A

1

A

2




Markov process: Example

Deep Learning




Policy

Deep Learning

Policy: m: S — A - a mapping from state to action
For every state we need to choose an action
Example:

e 74 - always take the slow (red) action

e 7 - always take the fast (blue) action

e 7 - if fallen take slow action, fast otherwise

e mp - if moving take fast action, slow otherwise

A policy need not be deterministic - g - all states take slow action with probability 0.3
and fast action with probability 0.7

It may be viewed as rule book



Reward

Deep Learning

e Each action is associated with some reward

e Return is the sum of discounted rewards gy = rey1 + Yreyo + ... + rr = rep1 + Y8611



State action diagram

Deep Learning

e The agent starts from a root node s, takes action a
e Action a is chosen by some policy

e State-action diagram represents an episode (s, a, r,s)

©» O O



Elements of RL

Deep Learning

Agent
Environment
Policy — The way agent behaves at a given time

e Mapping of state-action pair to state
e Can use look up table or search method
e Core of reinforcement learning problem

Reward function — Defines the goal in reinforcement learning problem

It maps state-action pair to a single number

Objective of RL agent is to maximize total reward

Defines bad or good events

Must be unalterable by agent, however policy can be changed



Elements of RL (contd.)

Deep Learning

e Value function

e Specifies what is good in long run

e Value of a state is the total amount of reward an agent can expect to accumulate over
future starting from the state

e Indicates long term desirability of states

The action tries to move to a state of highest value (not highest reward)
Rewards are mostly given by the environment

Value must be estimated or reestimated from the sequence of observation
Need efficient method to find values

e Evolutionary methods (genetic algorithm, simulated annealing) search directly in the space of
policies without applying value function



Elements of RL (contd.)

Deep Learning

e Model of environment

e Mimics the behavior of environment
e Given state and action, model might predict resultant next state and next reward
e Every RL system uses trial and search methodology to learn



State value function

Deep Learning

e State Value Function - what is the value of a policy?
e The agent is allowed to make actions and collects rewards

e V/(s) - state value function wrt to 7 with h horizon. V0 =0



State value function

Deep Learning

State Value Function - what is the value of a policy?
The agent is allowed to make actions and collects rewards
V1 (s) - state value function wrt to m with h horizon. V0 =0

This can be computed using induction
e For h=1, Vi(s) = R(s,7(s)) + V(s) = R(s,a) + 0



State value function

Deep Learning

State Value Function - what is the value of a policy?

The agent is allowed to make actions and collects rewards
V1 (s) - state value function wrt to m with h horizon. V0 =0
This can be computed using induction

e For h=1, Vi(s) = R(s, ())+\/0() (sa)+0
e For h=2, VA(s) = R( +Z s, 7(s), s )R(s, 7(s))



State value function

Deep Learning

State Value Function - what is the value of a policy?
The agent is allowed to make actions and collects rewards
V1 (s) - state value function wrt to m with h horizon. V0 =0

™

This can be computed using induction
e For h=1, Vi(s) = R(s, ())+\/0() (5 a)+0

e For h=2, VA(s) = R( +Z s, 7(s), s )R(s, 7(s))

o Forany h, Vi(s) = R(s,m(s)) + > _ T(s.(s),§)VA(d)



State value function

Deep Learning

State Value Function - what is the value of a policy?
The agent is allowed to make actions and collects rewards
V1 (s) - state value function wrt to m with h horizon. V0 =0

™

This can be computed using induction
e For h=1, Vi(s) = R(s, ())+\/0() (5 a)+0

e For h=2, VA(s) = R( +Z s, 7(s), s )R(s, 7(s))
o Forany h, Vi(s) = R(s,m(s)) + > _ T(s.(s),§)VA(d)

Goal is to compute Vi (s) = Ex[gelst = 5] = Ex[> vV revar1lse = 9l

~ - discount factor. v = 0 is myopic, 1 means farsighted



State value function

Deep Learning

State Value Function - what is the value of a policy?

The agent is allowed to make actions and collects rewards
V1 (s) - state value function wrt to m with h horizon. V0 =0
This can be computed using induction

e For h=1, Vi(s) = R(s, ())+\/0() (sa)+0
e For h=2, VA(s) = R( +Z s, 7(s), s )R(s, 7(s))

o Forany h, Vi(s) = R(s,m(s)) + > _ T(s.(s),§)VA(d)

Goal is to compute Vi (s) = Ex[gelst = 5] = Ex[> vV revar1lse = 9l

~ - discount factor. v = 0 is myopic, 1 means farsighted

Vi(s) =E[Ry+~YR1 +...|m,s0 = s] = R(s,7(s)) + ’yz T(s,m(s),5)
s

V(s)



Action value function

Deep Learning

e Action Value Function - similar to state value function, it maps state-action to value

e QI'(s,a) - state-action value function wrt to 7 with h horizon at state s with action a.

Q?r(sa a) =0



Action value function

Deep Learning

e Action Value Function - similar to state value function, it maps state-action to value

e QI'(s,a) - state-action value function wrt to 7 with h horizon at state s with action a.
Q(s,a) =0

e This can be computed using induction
e For h=1, Qi(s,a) = R(s,a) + Q(s,0) = R(s,a) + 0



Action value function

Deep Learning

e Action Value Function - similar to state value function, it maps state-action to value

e QI'(s,a) - state-action value function wrt to 7 with h horizon at state s with action a.
Q(s,a) =0

e This can be computed using induction

e For h=1, Qi(s,a) = R(s,a) + Q(s,0) = R(s,a) + 0
e For h=2, @ (s,a) = R(s, a) +ZT57r mgXR(s',a/)



Action value function

Deep Learning

Action Value Function - similar to state value function, it maps state-action to value
Q"(s,a) - state-action value function wrt to 7 with h horizon at state s with action a.
Q(s,a) =0

This can be computed using induction

e For h=1, Qi(s,a) = R(s,a) + Q(s,0) = R(s,a) + 0
e For h=2, @ (s,a) = R(s, a) —I—ZTST[’ mz}xR(s',a')

e For any h, @(s,a) = R(s,a) + Z T(s,m(s),s) max Q1(s, d)
a/
e For n states, m actions, h horizon, computation time is O(nmbh)

Goal is to compute Q. (s,a) = E[ge|st = s, ar = a] = Ex >, V<rerki1lse = s, ar = 3



Relationship between Vand @

Deep Learning

e One can be determined if the other is known

o Vils) = 3 n(als)Quls, a)

a



Model based vs Model free

Deep Learning

e Model based - it tries to learn transition function, reward function

Start with a policy, interact with environment, learn world model
Use the world model to train the agent
More suitable for complex environment

Needs more computational resources

e Model free - finds policy or directly estimates value function or both

Q-learning
Actor-critic learning
More suitable for real time applications

Less likely to succeed in complex environment



Agent Representation of State

Deep Learning

e State representation - green, blue, red sequence

e State representation - number of reds, greens, blues

O—0O0—0—0——
O—0O0—0—"0—



Bellman expectation for state value function

Deep Learning

e Expected return starting from s following policy 7 satisfies recursive relation

Vi(s) = Exlgdst =5 e
" average

s

©OO000O0



Bellman expectation for state value function

Deep Learning

e Expected return starting from s following policy 7 satisfies recursive relation
Vi(s) = Erlgels: =]

(=)
= E, [Z Vorerrplse = 5] " N

| ey
©OO000O0



Bellman expectation for state value function

Deep Learning

e Expected return starting from s following policy 7 satisfies recursive relation
Vi(s) = Erlgels: =]

(=)
= E, [Z Vorerrplse = 5] " N

k

‘ _ *(2)
re+1 + WZW Ferktolse = s
k r

©OO000O0

- E,




Bellman expectation for state value function

Deep Learning

e Expected return starting from s following policy 7 satisfies recursive relation
Vi(s) = Erlgels: =]

B B CT Dnaverage
Ve rerktilse = s
k

‘ _ *(2)
re+1 + WZW Ferktolse = s
k r

= Ex[req1 +v8ev1lse = s @ O O O O O

- E,

= E.




Bellman expectation for state value function

Deep Learning

e Expected return starting from s following policy 7 satisfies recursive relation

Vi(s) = Exlgds: =5

k " average
Ex Z’Y Fepk1|St = 5]
k

= Ep|rg1+ VZkat+k+2\5t = 5] 5 ° R
X r
= Eﬂ[rt+1 + ’Ygt—&—l‘st = S]
OO0
_ Z (als) ZZ ,1s,a)(r+ YEx[ger1]se1 = §)

OO



Bellman expectation for state value function

Deep Learning

e Expected return starting from s following policy 7 satisfies recursive relation

Vi(s) =

Exgt|st = s

k " average
Ex Z’Y Fepk1|St = 5]
k

Er | rep1 + WZkat+k+2\5t = S] ) ° R
k r
Er[rev1 +v8ev1lst = s
OO0
Z (als) ZZ s, a)(r+ vEx[ger1|ser1 = 1)
S (als) Zp (8 rls, @) (r+ Y Va(5)

a s,r

OO



Bellman expectation for state value function

Deep Learning

e Expected return starting from s following policy 7 satisfies recursive relation

Vi(s) = Exlgds: =5

k " average
Ex Z’)’ Fepk1|St = 5]
k

= E, rt+1+72’7krt+k+2‘5t:5] s ﬁ
P r
= Exl[rer1 +78t1]st = 5
OO0
_ Z (als) ZZ ,1s,a)(r+ YEx[ger1]se1 = §)
_ Z (al )Z (d fs, a)(r+ Vi (s))

a s,r

OO

e In matrix form V™! = r 4+ TVA T - transition matrix



Bellman expectation for state-action value function

Deep Learning

e Expected return starting from s following policy 7 satisfies recursive relation

Qﬂ'(sa a) - }Eﬂ'[gt‘st — 57 atr = a]

average

@O OO

average




Bellman expectation for state-action value function

Deep Learning

e Expected return starting from s following policy 7 satisfies recursive relation

Qﬂ'(sa a) - }Eﬂ'[gt‘st — 57 atr = a]

= E, [Z Yrerrals, a]
k

average

@O OO

average



Bellman expectation for state-action value function

Deep Learning

e Expected return starting from s following policy 7 satisfies recursive relation

Qﬂ'(sa a) - }Eﬂ'[gt‘st — 57 atr = a]

= E, [Z Yrerrals, a]
k

= Eﬂ [rt+1 + ’YQ(SJ7 a/)‘S, a]

average

@O OO

average



Bellman expectation for state-action value function

Deep Learning

e Expected return starting from s following policy 7 satisfies recursive relation

Qﬂ'(sa a) - }Eﬂ'[gt‘st — 57 atr = a]

k
Er Z Y retkt1ls, 3]
k

= Eﬂ— [rt+1 + ’YQ(SJ7 a/)‘S, a]

average

_; r]sa(r-i-”yz !§Qw513> 1010 OO

average



Optimal policy

Deep Learning

e A policy 7 is better than or equal to a policy 7’ if its expected return is greater than or
equal to that of 7’ for all all states: © > 7’ iff V:(s) > Vi (s) Vs



Optimal policy

Deep Learning

e A policy 7 is better than or equal to a policy 7’ if its expected return is greater than or
equal to that of 7’ for all all states: © > 7’ iff V:(s) > Vi (s) Vs

e Optimal value function: Vi = max V;(s) = maxE [gt|s: = 5|
™ s

e Optimal state-action value: Q.(s,a) = max Q(s, a)
s



Optimal policy

Deep Learning

A policy 7 is better than or equal to a policy 7’ if its expected return is greater than or
equal to that of 7’ for all all states: © > 7’ iff V:(s) > Vi (s) Vs

Optimal value function: Vi = max V,(s) = maxE |[g¢|s; = s

Optimal state-action value: Q.(s, a) = max Q. (s, a)

Bellman optimal equation for state value: V. (s) = maxz p(s,rls,a)(r+vVi(s))
a

s'r
Bellman optimal equation for state-action value:

Q«(s, a) Zp ,rs, a)( r—l—fymaxQ*(s’ a))



Deep Learning

o Vi(f)=0,Vi(s) =1, Vi(m) =




Deep Learning

o Vi(N=0,Vi(s) =1, Vi(m) = {
e V() =max{—1+2x1,0+0}=




Example

Deep Learning

o V(A = 0,Vi(5) = 1, Vi(m) -
o V2(f)=max{—1+ 2 x1,0+0} =1,

\/i(s)_max{l'i_rvg)'i_*x } 327




Example

Deep Learning

o Vi(f)= 0V1()—1 Vi(m) = {
e V() =max{—1+2x1,0+0}= ;,
V2(s) = max{1+,,5+—><7}
\/ﬁ(m)fmax{l—l—5,5+f><7}f252




Deep Learning

_ 1(c) — 1 _7
f) —0; V*(S) _l,V*(m) -5
f):max{—%Jr% X1,0+0}:%a

(
(
(s):max{l-l—%,%-i-%xg}z%,
(
(

2

=max{l+I,1+2xI} =252

f) = 0.88, VB(s) = 3.52, VB(m) = 3.52




Iterative policy evaluation

Deep Learning

e Steps to determine V(s) given a policy:
initialize V(s) =0 Vs
do:
A=0
for s € S do:
v=V(s)
Vis) = X, m(als) Tu P& rls. a) (r+ V()
A = max{A, v— V(s)|}
until A <€



Policy iteration

Deep Learning

e Steps for determining policy:
initialize V(s), 7(s)
do:
Run iterative policy evaluation (compute V)
convergence = True
for s € S do:
a=m(s)
m(s) = argmax, o, p(s, s, a) (r + yV(s'))
if a # 7(s) then: convergence = False

until convergence



Value iteration

Deep Learning

e Steps are as follows
initialize Q(s,a) =0 Vs, a
do:
for (s,a) € (S, A) do:

q=Q(s,a)
Q(s,a) = r(s,a) + v o T(s,a,¢) maxy Q(s, )
A = max{A, lv— V(s)ll}

until A <e



Model based RL

Deep Learning

To model the transition relation and rewards based on states, actions and rewards experi-
enced, (s,a, r,s)

Let the agent make action and observes the states and rewards

N(s,a,¢)+1
N(s, a) + |9
N(s, a,s') - number of times the agent was in s, moves to s’ on action s,

N(s,a) = > o N(s, a,d)

Transition can be estimated as: T(s,a,s) = , where

E(s,a) r(57 a)

Reward function can be estimated as: R(s, a) = Ns.2)



Monte Carlo sampling

Deep Learning

It considers experiences is divided into episodes that terminates

Reward value can be computed only when after termination

Example: incremental mean computation

e Mean at time step t is updated based on current value x; and mean at time (t — 1)
t

® [it= lt ;Xi = [t—1 + %(Xt — 1)

For MDP, V(s;) = V(s;) + a(g: — V(st)), g+ actual return



Monte Carlo prediction

Deep Learning

e Steps are as follows
initialize V(s) =0, return(s) = ()
do:
Generate episode of 7
for s € S do:
g = return following the first occurence of s
return(s)= return(s) U g
V(s) = p(return(s))

until convergence



Temporal difference

Deep Learning

e |t also considers experience to solve the prediction problem
e Reward value is computed only until the next time step (Monte Carlo considers termination)
e For MDP, V(s;) = V(st) + a(rer1 + v V(ser1) — V(st))



Temporal difference prediction

Deep Learning

e Steps for determining V(s) are as follows
initialize V(s) =0
do:
Generate episode of 7
for s € S do:
a = action given by m at s
Take action a, observe r, s
s) = Vs) + alr+~yV(s) — Vs))
s=¢

until s is terminal



Q-Learning

Deep Learning

e [t is a model free learning method, directly estimates the a value function

e In model based we estimate T and R using value iteration. Given T and R we can compute

Q(s,a) = R(s,a) +v) o T(s,a,s) maxy Q(s, )
e In Q-learning, we estimate Q(s, a) = Q(s, a) + « <r+ 7 max Q(s,4d) — Qs a)>



Q-Learning

Deep Learning

[t is a model free Tearning method, directly estimates the a value function

In model based we estimate T and R using value iteration. Given T and R we can compute

Q(s,a) = R(s,a) + v >y T(s,a,¢) maxy Q(s, d)
In Q-learning, we estimate Q(s,a) = Q(s,a) + « <r+ 7 max Q(s,d) — Q(s, a))

Steps:

initialize Q(s, a) = 0; Select start state sp

do:
a = select an action based on e-greedy strategy
q=Q(s a)

Take action a to get reward r and next state s/
Q(s,a) = Q(s,a) + a(r+ymaxy Q(s,d) — Q(s, a))
A=max{A, [lg— Qs.a)}; s=¢

until A is less than a given threshold




SARSA

Deep Learning

e In Q-learning, we estimate Q(s,a) = Q(s, a) + « <r+ ymax Q(s, a') — Q(s, a))

e In SARSA, we estimate Q(s,a) = Q(s,a) + a (r+yQ(s, a') — Q(s, a))

e It needs (s, a,r,s,a) tuple for learning

e On policy vs Off policy



State value function approximation

Deep Learning

e A neural network may be used to estimate Vj(s) ~ V(s) or Qy(s, a) = Q(s, a) or a policy
po(als)



State value function approximation

Deep Learning

e A neural network may be used to estimate Vj(s) ~ V(s) or Qy(s, a) = Q(s, a) or a policy
po(als)
e Our goal is to find 6 such that MSE between V.(s) and Vj(s) is minimized



State value function approximation

Deep Learning

e A neural network may be used to estimate Vj(s) ~ V(s) or Qy(s, a) = Q(s, a) or a policy
po(als)
e Our goal is to find 6 such that MSE between V.(s) and Vj(s) is minimized

. J0) = gEswﬂ(s) — V()]



State value function approximation

Deep Learning

e A neural network may be used to estimate Vj(s) ~ V(s) or Qy(s, a) = Q(s, a) or a policy
po(als)
e Our goal is to find 6 such that MSE between V.(s) and Vj(s) is minimized

o J0) = JE(Va(s) ~ Vo(s)] = g SI(Va(s) ~ Vo(9)’
seS



State value function approximation

Deep Learning

e A neural network may be used to estimate Vj(s) ~ V(s) or Qy(s, a) = Q(s, a) or a policy
po(als)
e Our goal is to find 6 such that MSE between V.(s) and Vj(s) is minimized

e JO) = %Es[(Vn(S) ~ Vo(9))?] = %Z[(VW(S) — Vo(9))’T = Y u(s)[(Vie(s) = Vo(s))’]

seS seS



State value function approximation

p Learnil

A neural network may be used to estimate Vj(s) ~ Vi (s) or Qy(s, a) = Q(s, a) or a policy
po(als)
Our goal is to find 6 such that MSE between V(s) and Vj(s) is minimized
1 1
J(0) = SES[(Va(s) = Vo(9))*] = gZ[(Vw(S) = Vo(9))%] = Y u(9)[(Vie(s) = Va(s))?]
s€S s€S
Gradient: VpJ(0) = —E4[(Vz(s) — Va(s)) Ve Vi (s)]
For gradient update: A0 = —aVpJ(0) = oEq[(Vr(s) — Vi(s)) Ve Va(s)]



State value function approximation

p Learnil

A neural network may be used to estimate Vj(s) ~ Vi (s) or Qy(s, a) = Q(s, a) or a policy
po(als)
Our goal is to find 6 such that MSE between V(s) and Vj(s) is minimized
1 1
J(0) = SES[(Va(s) = Vo(9))*] = gZ[(Vw(S) = Vo(9))%] = Y u(9)[(Vie(s) = Va(s))?]
s€S s€S
Gradient: VpJ(0) = —E4[(Vz(s) — Va(s)) Ve Vi (s)]

For gradient update: A0 = —aVpJ(0) = oEq[(Vr(s) — Vi(s)) Ve Va(s)]
If we have single sample (like SGD), A0 = aVyJ(0) = a|(Vx(s) — Vy(s)) Ve Va(s)]



State value function approximation

p Leal

A neural network may be used to estimate Vj(s) ~ Vi (s) or Qy(s, a) = Q(s, a) or a policy
po(als)
Our goal is to find € such that MSE between V. ( s) and Vj(s) is minimized

J(0) = *E S[(Va(s) = Vo(s)?] = 252 Vo(9))] = Y u(s)[(Va(s) = Vo(9))?]

s€S s€S
Gradient: VpJ(0) = —E4[(Vz(s) — Va(s)) Ve Vi (s)]

For gradient update: A0 = —aVpJ(0) = oEq[(Vr(s) — Vi(s)) Ve Va(s)]
If we have single sample (like SGD), A0 = aVyJ(0) = a|(Vx(s) — Vy(s)) Ve Va(s)]
e For Monte Carlo: Af = «a[(g— Vi(s)) Ve Va(s)]



State value function approximation

Deep Learning

A neural network may be used to estimate Vj(s) ~ Vi (s) or Qy(s, a) = Q(s, a) or a policy
po(als)
Our goal is to find € such that MSE between V. ( s) and Vj(s) is minimized

J(0) = *E S[(Va(s) = Vo(s)?] = 252 Vo(9))] = Y u(s)[(Va(s) = Vo(9))?]

s€S s€S
Gradient: VpJ(0) = —E4[(Vz(s) — Va(s)) Ve Vi (s)]

For gradient update: A0 = —aVpJ(0) = oEq[(Vr(s) — Vi(s)) Ve Va(s)]

If we have single sample (like SGD), A0 = aVyJ(0) = a|(Vx(s) — Vy(s)) Ve Va(s)]
e For Monte Carlo: Af = «a[(g— Vi(s)) Ve Va(s)]

e For Temporal Difference: A0 = «af(r+ vVy(s) — Vi(s)) Vo Vi(s)]



Action value function approximation

Deep Learning

e Need to estimate Qy(s, a)
e Our goal is to find 6 such that MSE between Q. (s, a) and Qy(s, a) is minimized



Action value function approximation

Deep Learning

e Need to estimate Qy(s, a)
e Our goal is to find 6 such that MSE between Q. (s, a) and Qy(s, a) is minimized

o 0) = 3E(sn)rl(Qn(58) — Qu(s,2))]



Action value function approximation

Deep Learning

Need to estimate Qy(s, a)

Our goal is to find 6 such that MSE between Q (s, a) and Qy(s, a) is minimized
1

J0) = SE(s.a)~rl(Qn(s,) = Qo(s,2))’]

Gradient: VyJ(0) = —E (s )~ [(Qr(s,a) — Qy(s,a))VeQy(s, a)]



Action value function approximation

Deep Learning

Need to estimate Qy(s, a)

Our goal is to find 6 such that MSE between Q (s, a) and Qy(s, a) is minimized
1

J0) = SE(s.a)~rl(Qn(s,) = Qo(s,2))’]

Gradient: VyJ(0) = —E (s )~ [(Qr(s,a) — Qy(s,a))VeQy(s, a)]

For gradient update: A0 = —aVpJ(0) = oE[(Qx(s,a) — Qy(s, a))VeQa(s, a)]



Action value function approximation

Deep Learning

Need to estimate Qy(s, a)
Our goal is to find 6 such that MSE between Q (s, a) and Qy(s, a) is minimized

J0) = §E(eayrl(@n(s,2) — Qu(s2))”

Gradient: VyJ(0) = —E(s )~ [(Qr(s,a) — Qy(s,a)) Vo Qs(s, a)

For gradient update: A8 = —aVyJ(0) = aEs[(Qx(s,a) — Qo(s,a))VeQy(s, a)]
If we have single sample, A0 = aVyJ(0) = a[(Q=(s,a) — Qu(s,a))VoQy(s, a)]



Action value function approximation

Deep Learning

Need to estimate Qy(s, a)
Our goal is to find 6 such that MSE between Q (s, a) and Qy(s, a) is minimized

0) = JEoenl(Qel5:2) — Qul5,9))”)

Gradient: VyJ(0) = —E(s )~ [(Qr(s,a) — Qy(s,a)) Vo Qs(s, a)

For gradient update: A0 = —aVpJ(0) = oE[(Qx(s,a) — Qy(s, a))VeQa(s, a)]
If we have single sample, A0 = aVyJ(0) = a[(Q=(s,a) — Qu(s,a))VoQy(s, a)]
e For Monte Carlo: Af = «a[(g— Qu(s,a))VoQu(s, a)]

e For Temporal Difference: A0 = af(r+ vQy(s',d) — Qu(s, a))VaQy(s, a)]
Can diverge using neural network due to

e Correlation between samples
e Non-stationary target



Experience replay

Deep Learning

Neural network needs to learn from states, action, reward information ie. ¢;
Successive samples are usually correlated
Need to use replay buffer that stores ¢;

Sample from the buffer when updating Q values

(sia aj, ri,

f

i

)



Neural fitted (J-iteration (NFQ)

Deep Learning

Our goal is to find 6 such that MSE between Q. (s, a) and Qy(s, a) is minimized

1
Loss: J(0) = 2 (s,a) NW[(Q*(S a) — Qu(s, a))Q]
For gradient update: A = a[(Q.(s,a) — Qu(s, a))VgQy(s, a)]
Since we do not know Q.(s, a), optimal action value can be approximated as Q.(s, a) ~

r+ymaxy Qp(s,a)

Hence network parameters updated by Af = o | r+ymax Qy(s,a") — Qu(s,a)| VoQy(s, a)
a/



Deep ()-Network (DQN)

Deep Learning

It uses a second neural network

In NFQ, we set the target as yyrg = r+ v maxy Qp(s, a)
In case of DQN, we use ypony = r+ ymaxy Qp—(s', ")
DQN minimizes MSE loss

L(el) - IEf’(s,a,r,s’)wD; [()/: - Q@,-(Sv a))Q] - E(s,a,r,s’)ND,- |:r+ ’}/IH;%X Qﬁf (S,> a/) - Q&,—(57 a))2
Parameters 6_ of the target network Q_ (s, ') are frozen for multiple steps, 6; are updated
using SGD

Vo,L(0:) = E(sars)~p; | (r+7ymax Qo (s,d) — Qo,(s,a)) Vo, Qu,(s, 3)}



DQN Algorithm

Deep Learning

e Steps are as follows:
initialize (1) D = (0 - empty reply buffer, (2) online Qy network parameters with ¢ with
random values, (3) set for target network Qg parameters f_ = 0, (4) start state s= s
repeat:
for each episode do:
run e-greedy policy based Qy network
collect transitions (s, a,r,s') in D
Select a sample (s, a,r,s) from D
q= Qp (Sa a);
Qo(s,a) = Qy(s,a) + a(r+ymaxy Qy_(s,d) — Qy(s, a))
A =max{A, |lg— Qy(s, a)||}
s=4¢
update 6_ = 6 every k number of episodes
until stopping criteria



References

Deep Learning

e Reinforcement Learning: An Introduction by Andrew Barto and Richard S. Sutton

e Human-level control through deep reinforcement learning by Deep Mind, Google



Example: Recycling Robot

Deep Learning

e A robot does one of the following at each time step
e Actively search for a can
e Remain stationary and wait for someone to bring a can
e Go back to home base to recharge battery



Recycling Robot: Transition relation

Deep Learning

’ s ‘ s ‘ a ‘ p(s'[s, a) ‘ r(s,a,s) ‘
high | high | search ¢! I'search
high | low | search 11—« I'search
low | high | search 1-06 -3
low | low | search B Isearch
high | high wait 1 I'wait
high | low wait 0 Nwait
low | high wait 0 Nwait
low | low wait 1 Nwait
low | high | recharge 1 0
low | low | recharge 0 0




Deep Learning

B, Tsearch
search

0 recharge

I, Twait
O, Tsearch I-0t, T'searcn

Image source: Reinforcement Learning by Andrew Barto and Richard S. Sutton



Optimal value computation

p Leal

e For recycling robot - h - high, /- low, s - search, w - wait, r - recharge

[ pbl, St s, B) £ VE(B)] 4 p(,8) [ 5, 1)+ 4 V(D).
p(hlh, w)[r(h, w, h) + 4V (h)] + p(Lh, wlr(h, ws ) +V~()]

Vi(h) = max{rs+~y[aV'(h)+ (1 —-a)V()], v +~yV(h)}

Ars =3(1 = B) +[(1 = B)V*(h) + sV*(I)]
V() = max< r,+~yV*()),

yV*(h)



