CS365: Deep Learning

Deep Reinforcement Learning

Arijit Mondal
Dept. of Computer Science \& Engineering Indian Institute of Technology Patna arijit@iitp.ac.in

Multi Armed Bandit

- Given k slot machines, an action is to pull an arm of one of the machines
- At each time step t the agent chooses and action a_{t} among the k actions and receives reward r_{t}
- Taking action a is pulling arm i which gives reward $r(a)$ with probability p_{i}
- Goal is to maximize the total expected return
- Expected reward for action a is $Q(a)=\mathbb{E}\left[r_{t} \mid a_{t}=a\right]$
- We can estimate the value of $Q_{t}(a)$ of action a at time t
- For example, mean reward for each action

Multi Armed Bandit

- Given k slot machines, an action is to pull an arm of one of the machines
- At each time step t the agent chooses and action a_{t} among the k actions and receives reward r_{t}
- Taking action a is pulling arm i which gives reward $r(a)$ with probability p_{i}
- Goal is to maximize the total expected return
- Expected reward for action a is $Q(a)=\mathbb{E}\left[r_{t} \mid a_{t}=a\right]$
- We can estimate the value of $Q_{t}(a)$ of action a at time t
- For example, mean reward for each action
- A greedy takes the best estimate at time t, exploiting knowledge $a_{t}=\arg \max _{a} Q_{t}(a)$, choosing the action with the largest mean reward

Interaction with environment

Reinforcement learning

- Set of actions that the learner will make in order to maximize its profit
- Action may not only affect the next situation but also subsequent situation
- Trial and error search
- Delayed reward
- A learning agent is interacting with environment to achieve a goal
- Agent needs to have idea of state so that it can take right action
- Three key aspects - observation, action, goal

Reinforcement vs supervised learning

Reinforcement learning

- It is different from supervised learning
- Learning from examples provided by a knowledgeable external supervisor
- Not adequate for learning from interaction
- In interaction problem it is often impractical to obtain examples of desired behavior that are correct and representative of all situations
- Trade-off between exploration and exploitation
- To improve reward it must prefer effective action from the past (exploit)
- To discover such action it has to try unselected actions (explore)
- Exploit and exploration cannot be pursued exclusively
- Agent interacts with uncertain environment

When to use RL

- Data in the form of trajectories
- Need to make a sequence of decision
- Observe (partial, noisy) feedback to state or choice of action

Examples

- Chess player eg. games
- Robotics
- Adaptive controller
- All involve interaction between active decision making agent and its environment

ϵ-Greedy Approach

- A non-greedy action is explored
- We can choose greedily most of the time, sometime non-greedily
- For example, with small probability ϵ we choose greedily and ($1-\epsilon$) probability non-greedily
- Exploration vs Exploitation
- For each action a do: $Q(a)=0, N(a)=0$ number of times action is chosen
- For each time step do:
- $a= \begin{cases}\arg \max _{a} Q(a) & \text { with probability }(1-\epsilon) \\ \text { random action } & \text { with probability } \epsilon\end{cases}$
- $N(a)=N(a)+1$
- $Q(a)=Q(a)+(r(a)-Q(a)) / N(a)$

State machines

- S - set of possible state
- X - set of possible inputs
- A transition function $f: S \times X \rightarrow S$
- Y - set of possible outputs
- A mapping $g: S \rightarrow Y$

Markov process

- In multi-armed bandit, actions were stateless
- In many scenarios action will depend on past states
- Also the transition from one state to another state can have uncertainty
- Markov decision process assumes that probability of a state s_{t+1} depends only on s_{t} and a_{t}, not on any other previous states or actions

Markovian decision process

- S - set of states
- A - set of actions
- $\operatorname{Pr}\left(s_{t} \mid s_{t-1}, a_{t-1}\right)$ - Probabilistic effects
- r_{t} - reward function
- μ_{t} - initial state distribution

- Markov property: The future state depends only on the current state

$$
\operatorname{Pr}\left(s_{t} \mid s_{t-1}, \ldots, s_{0}\right)=\operatorname{Pr}\left(s_{t} \mid s_{t-1}\right)
$$

Markov process: Example

Policy

- Policy: $\pi: S \rightarrow A$ - a mapping from state to action
- For every state we need to choose an action
- Example:
- π_{A} - always take the slow (red) action
- π_{B} - always take the fast (blue) action
- π_{C} - if fallen take slow action, fast otherwise
- π_{D} - if moving take fast action, slow otherwise
- A policy need not be deterministic $-\pi_{E}$ - all states take slow action with probability 0.3 and fast action with probability 0.7
- It may be viewed as rule book

Reward

- Each action is associated with some reward
- Return is the sum of discounted rewards $g_{t}=r_{t+1}+\gamma r_{t+2}+\ldots+r_{T}=r_{t+1}+\gamma g_{t+1}$

State action diagram

- The agent starts from a root node s, takes action a
- Action a is chosen by some policy
- State-action diagram represents an episode $\left(s, a, r, s^{\prime}\right)$

Elements of RL

- Agent
- Environment
- Policy - The way agent behaves at a given time
- Mapping of state-action pair to state
- Can use look up table or search method
- Core of reinforcement learning problem
- Reward function - Defines the goal in reinforcement learning problem
- It maps state-action pair to a single number
- Objective of RL agent is to maximize total reward
- Defines bad or good events
- Must be unalterable by agent, however policy can be changed

Elements of RL (contd.)

- Value function
- Specifies what is good in long run
- Value of a state is the total amount of reward an agent can expect to accumulate over future starting from the state
- Indicates long term desirability of states
- The action tries to move to a state of highest value (not highest reward)
- Rewards are mostly given by the environment
- Value must be estimated or reestimated from the sequence of observation
- Need efficient method to find values
- Evolutionary methods (genetic algorithm, simulated annealing) search directly in the space of policies without applying value function

Elements of RL (contd.)

- Model of environment
- Mimics the behavior of environment
- Given state and action, model might predict resultant next state and next reward
- Every RL system uses trial and search methodology to learn

State value function

- State Value Function - what is the value of a policy?
- The agent is allowed to make actions and collects rewards
- $V_{\pi}^{h}(s)$ - state value function wrt to π with h horizon. $V_{\pi}^{0}=0$

State value function

- State Value Function - what is the value of a policy?
- The agent is allowed to make actions and collects rewards
- $V_{\pi}^{h}(s)$ - state value function wrt to π with h horizon. $V_{\pi}^{0}=0$
- This can be computed using induction
- For $h=1, V_{\pi}^{1}(s)=R(s, \pi(s))+V_{\pi}^{0}(s)=R(s, a)+0$

State value function

- State Value Function - what is the value of a policy?
- The agent is allowed to make actions and collects rewards
- $V_{\pi}^{h}(s)$ - state value function wrt to π with h horizon. $V_{\pi}^{0}=0$
- This can be computed using induction
- For $h=1, V_{\pi}^{1}(s)=R(s, \pi(s))+V_{\pi}^{0}(s)=R(s, a)+0$
- For $h=2, V_{\pi}^{2}(s)=R(s, \pi(s))+\sum_{s^{\prime}} T\left(s, \pi(s), s^{\prime}\right) R\left(s^{\prime}, \pi\left(s^{\prime}\right)\right)$

State value function

- State Value Function - what is the value of a policy?
- The agent is allowed to make actions and collects rewards
- $V_{\pi}^{h}(s)$ - state value function wrt to π with h horizon. $V_{\pi}^{0}=0$
- This can be computed using induction
- For $h=1, V_{\pi}^{1}(s)=R(s, \pi(s))+V_{\pi}^{0}(s)=R(s, a)+0$
- For $h=2, V_{\pi}^{2}(s)=R(s, \pi(s))+\sum_{s^{\prime}} T\left(s, \pi(s), s^{\prime}\right) R\left(s^{\prime}, \pi\left(s^{\prime}\right)\right)$
- For any $h, V_{\pi}^{h}(s)=R(s, \pi(s))+\sum_{s^{\prime}} T\left(s, \pi(s), s^{\prime}\right) V_{\pi}^{h-1}\left(s^{\prime}\right)$

State value function

- State Value Function - what is the value of a policy?
- The agent is allowed to make actions and collects rewards
- $V_{\pi}^{h}(s)$ - state value function wrt to π with h horizon. $V_{\pi}^{0}=0$
- This can be computed using induction
- For $h=1, V_{\pi}^{1}(s)=R(s, \pi(s))+V_{\pi}^{0}(s)=R(s, a)+0$
- For $h=2, V_{\pi}^{2}(s)=R(s, \pi(s))+\sum_{s^{\prime}} T\left(s, \pi(s), s^{\prime}\right) R\left(s^{\prime}, \pi\left(s^{\prime}\right)\right)$
- For any $h, V_{\pi}^{h}(s)=R(s, \pi(s))+\sum_{s^{\prime}} T\left(s, \pi(s), s^{\prime}\right) V_{\pi}^{h-1}\left(s^{\prime}\right)$
- Goal is to compute $V_{\pi}(s)=\mathbb{E}_{\pi}\left[g_{t} \mid s_{t}=s\right]=\mathbb{E}_{\pi}\left[\sum_{k} \gamma^{k} r_{t+k+1} \mid s_{t}=s\right]$
- γ-discount factor. $\gamma=0$ is myopic, 1 means farsighted

State value function

- State Value Function - what is the value of a policy?
- The agent is allowed to make actions and collects rewards
- $V_{\pi}^{h}(s)$ - state value function wrt to π with h horizon. $V_{\pi}^{0}=0$
- This can be computed using induction
- For $h=1, V_{\pi}^{1}(s)=R(s, \pi(s))+V_{\pi}^{0}(s)=R(s, a)+0$
- For $h=2, V_{\pi}^{2}(s)=R(s, \pi(s))+\sum_{s^{\prime}} T\left(s, \pi(s), s^{\prime}\right) R\left(s^{\prime}, \pi\left(s^{\prime}\right)\right)$
- For any $h, V_{\pi}^{h}(s)=R(s, \pi(s))+\sum_{s^{\prime}} T\left(s, \pi(s), s^{\prime}\right) V_{\pi}^{h-1}\left(s^{\prime}\right)$
- Goal is to compute $V_{\pi}(s)=\mathbb{E}_{\pi}\left[g_{t} \mid s_{t}=s\right]=\mathbb{E}_{\pi}\left[\sum_{k} \gamma^{k} r_{t+k+1} \mid s_{t}=s\right]$
- γ-discount factor. $\gamma=0$ is myopic, 1 means farsighted
- $V_{\pi}(s)=\mathbb{E}\left[R_{0}+\gamma R_{1}+\ldots \mid \pi, s_{0}=s\right]=R(s, \pi(s))+\gamma \sum_{s^{\prime}} T\left(s, \pi(s), s^{\prime}\right) V_{\pi}\left(s^{\prime}\right)$

Action value function

- Action Value Function - similar to state value function, it maps state-action to value
- $Q_{\pi}^{h}(s, a)$ - state-action value function wrt to π with h horizon at state s with action a. $Q_{\pi}^{0}(s, a)=0$

Action value function

- Action Value Function - similar to state value function, it maps state-action to value
- $Q_{\pi}^{h}(s, a)$ - state-action value function wrt to π with h horizon at state s with action a. $Q_{\pi}^{0}(s, a)=0$
- This can be computed using induction
- For $h=1, Q_{\pi}^{1}(s, a)=R(s, a)+Q_{\pi}^{0}(s, 0)=R(s, a)+0$

Action value function

- Action Value Function - similar to state value function, it maps state-action to value
- $Q_{\pi}^{h}(s, a)$ - state-action value function wrt to π with h horizon at state s with action a. $Q_{\pi}^{0}(s, a)=0$
- This can be computed using induction
- For $h=1, Q_{\pi}^{1}(s, a)=R(s, a)+Q_{\pi}^{0}(s, 0)=R(s, a)+0$
- For $h=2, Q_{\pi}^{2}(s, a)=R(s, a)+\sum_{s^{\prime}} T\left(s, \pi(s), s^{\prime}\right) \max _{a^{\prime}} R\left(s^{\prime}, a^{\prime}\right)$

Action value function

- Action Value Function - similar to state value function, it maps state-action to value
- $Q_{\pi}^{h}(s, a)$ - state-action value function wrt to π with h horizon at state s with action a. $Q_{\pi}^{0}(s, a)=0$
- This can be computed using induction
- For $h=1, Q_{\pi}^{1}(s, a)=R(s, a)+Q_{\pi}^{0}(s, 0)=R(s, a)+0$
- For $h=2, Q_{\pi}^{2}(s, a)=R(s, a)+\sum_{s^{\prime}} T\left(s, \pi(s), s^{\prime}\right) \max _{a^{\prime}} R\left(s^{\prime}, a^{\prime}\right)$
- For any $h, Q_{\pi}^{h}(s, a)=R(s, a)+\sum_{s^{\prime}} T\left(s, \pi(s), s^{\prime}\right) \max _{a^{\prime}} Q_{\pi}^{h-1}\left(s^{\prime}, a^{\prime}\right)$
- For n states, m actions, h horizon, computation time is $O(n m h)$
- Goal is to compute $Q_{\pi}(s, a)=\mathbb{E}_{\pi}\left[g_{t} \mid s_{t}=s, a_{t}=a\right]=\mathbb{E}_{\pi}\left[\sum_{k} \gamma^{k} r_{t+k+1} \mid s_{t}=s, a_{t}=a\right]$

Relationship between V and Q

- One can be determined if the other is known
- $V_{\pi}(s)=\sum_{a} \pi(a \mid s) Q_{\pi}(s, a)$

Model based vs Model free

- Model based - it tries to learn transition function, reward function
- Start with a policy, interact with environment, learn world model
- Use the world model to train the agent
- More suitable for complex environment
- Needs more computational resources
- Model free - finds policy or directly estimates value function or both
- Q-learning
- Actor-critic learning
- More suitable for real time applications
- Less likely to succeed in complex environment

Agent Representation of State

- State representation - green, blue, red sequence
- State representation - number of reds, greens, blues

Bellman expectation for state value function

- Expected return starting from s following policy π satisfies recursive relation

$$
V_{\pi}(s)=\mathbb{E}_{\pi}\left[g_{t} \mid s_{t}=s\right]
$$

Bellman expectation for state value function

- Expected return starting from s following policy π satisfies recursive relation

$$
\begin{aligned}
V_{\pi}(s) & =\mathbb{E}_{\pi}\left[g_{t} \mid s_{t}=s\right] \\
& =\mathbb{E}_{\pi}\left[\sum_{k} \gamma^{k} r_{t+k+1} \mid s_{t}=s\right]
\end{aligned}
$$

Bellman expectation for state value function

- Expected return starting from s following policy π satisfies recursive relation

$$
\begin{aligned}
V_{\pi}(s) & =\mathbb{E}_{\pi}\left[g_{t} \mid s_{t}=s\right] \\
& =\mathbb{E}_{\pi}\left[\sum_{k} \gamma^{k} r_{t+k+1} \mid s_{t}=s\right] \\
& =\mathbb{E}_{\pi}\left[r_{t+1}+\gamma \sum_{k} \gamma^{k} r_{t+k+2} \mid s_{t}=s\right]
\end{aligned}
$$

Bellman expectation for state value function

- Expected return starting from s following policy π satisfies recursive relation

$$
\begin{aligned}
V_{\pi}(s) & =\mathbb{E}_{\pi}\left[g_{t} \mid s_{t}=s\right] \\
& =\mathbb{E}_{\pi}\left[\sum_{k} \gamma^{k} r_{t+k+1} \mid s_{t}=s\right] \\
& =\mathbb{E}_{\pi}\left[r_{t+1}+\gamma \sum_{k} \gamma^{k} r_{t+k+2} \mid s_{t}=s\right] \\
& =\mathbb{E}_{\pi}\left[r_{t+1}+\gamma g_{t+1} \mid s_{t}=s\right]
\end{aligned}
$$

Bellman expectation for state value function

- Expected return starting from s following policy π satisfies recursive relation

$$
\begin{aligned}
V_{\pi}(s) & =\mathbb{E}_{\pi}\left[g_{t} \mid s_{t}=s\right] \\
& =\mathbb{E}_{\pi}\left[\sum_{k} \gamma^{k} r_{t+k+1} \mid s_{t}=s\right] \\
& =\mathbb{E}_{\pi}\left[r_{t+1}+\gamma \sum_{k} \gamma^{k} r_{t+k+2} \mid s_{t}=s\right] \\
& =\mathbb{E}_{\pi}\left[r_{t+1}+\gamma g_{t+1} \mid s_{t}=s\right]
\end{aligned}
$$

$$
=\sum_{a} \pi(a \mid s) \sum_{s^{\prime}} \sum_{r} p\left(s^{\prime}, r \mid s, a\right)\left(r+\gamma \mathbb{E}_{\pi}\left[g_{t+1} \mid s_{t+1}=s^{\prime}\right]\right)
$$

Bellman expectation for state value function

- Expected return starting from s following policy π satisfies recursive relation

$$
\begin{aligned}
V_{\pi}(s) & =\mathbb{E}_{\pi}\left[g_{t} \mid s_{t}=s\right] \\
& =\mathbb{E}_{\pi}\left[\sum_{k} \gamma^{k} r_{t+k+1} \mid s_{t}=s\right] \\
& =\mathbb{E}_{\pi}\left[r_{t+1}+\gamma \sum_{k} \gamma^{k} r_{t+k+2} \mid s_{t}=s\right] \\
& =\mathbb{E}_{\pi}\left[r_{t+1}+\gamma g_{t+1} \mid s_{t}=s\right] \\
& =\sum_{a} \pi(a \mid s) \sum_{s^{\prime}} \sum_{r} p\left(s^{\prime}, r \mid s, a\right)\left(r+\gamma \mathbb{E}_{\pi}\left[g_{t+1} \mid s_{t+1}=s^{\prime}\right]\right) \\
& =\sum_{a} \pi(a \mid s) \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left(r+\gamma V_{\pi}\left(s^{\prime}\right)\right)
\end{aligned}
$$

Bellman expectation for state value function

- Expected return starting from s following policy π satisfies recursive relation

$$
\begin{aligned}
V_{\pi}(s) & =\mathbb{E}_{\pi}\left[g_{t} \mid s_{t}=s\right] \\
& =\mathbb{E}_{\pi}\left[\sum_{k} \gamma^{k} r_{t+k+1} \mid s_{t}=s\right] \\
& =\mathbb{E}_{\pi}\left[r_{t+1}+\gamma \sum_{k} \gamma^{k} r_{t+k+2} \mid s_{t}=s\right] \\
& =\mathbb{E}_{\pi}\left[r_{t+1}+\gamma g_{t+1} \mid s_{t}=s\right]
\end{aligned}
$$

$$
=\sum_{a} \pi(a \mid s) \sum_{s^{\prime}} \sum_{r} p\left(s^{\prime}, r \mid s, a\right)\left(r+\gamma \mathbb{E}_{\pi}\left[g_{t+1} \mid s_{t+1}=s^{\prime}\right]\right)
$$

$$
=\sum_{a}^{a} \pi(a \mid s) \sum_{s^{\prime}, r}^{s^{\prime}} p\left(s^{\prime}, r \mid s, a\right)\left(r+\gamma V_{\pi}\left(s^{\prime}\right)\right)
$$

Bellman expectation for state-action value function

- Expected return starting from s following policy π satisfies recursive relation

$$
Q_{\pi}(s, a)=\mathbb{E}_{\pi}\left[g_{t} \mid s_{t}=s, a_{t}=a\right]
$$

Bellman expectation for state-action value function

- Expected return starting from s following policy π satisfies recursive relation

$$
\begin{aligned}
Q_{\pi}(s, a) & =\mathbb{E}_{\pi}\left[g_{t} \mid s_{t}=s, a_{t}=a\right] \\
& =\mathbb{E}_{\pi}\left[\sum_{k} \gamma^{k} r_{t+k+1} \mid s, a\right]
\end{aligned}
$$

Bellman expectation for state-action value function

- Expected return starting from s following policy π satisfies recursive relation

$$
\begin{aligned}
Q_{\pi}(s, a) & =\mathbb{E}_{\pi}\left[g_{t} \mid s_{t}=s, a_{t}=a\right] \\
& =\mathbb{E}_{\pi}\left[\sum_{k} \gamma^{k} r_{t+k+1} \mid s, a\right] \\
& =\mathbb{E}_{\pi}\left[r_{t+1}+\gamma Q\left(s^{\prime}, a^{\prime}\right) \mid s, a\right]
\end{aligned}
$$

Bellman expectation for state-action value function

- Expected return starting from s following policy π satisfies recursive relation

$$
\begin{aligned}
Q_{\pi}(s, a) & =\mathbb{E}_{\pi}\left[g_{t} \mid s_{t}=s, a_{t}=a\right] \\
& =\mathbb{E}_{\pi}\left[\sum_{k} \gamma^{k} r_{t+k+1} \mid s, a\right] \\
& =\mathbb{E}_{\pi}\left[r_{t+1}+\gamma Q\left(s^{\prime}, a^{\prime}\right) \mid s, a\right] \\
& =\sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left(r+\gamma \sum_{a^{\prime}} \pi\left(a^{\prime} \mid s^{\prime}\right) Q_{\pi}\left(s^{\prime}, a^{\prime}\right)\right)
\end{aligned}
$$

Optimal policy

- A policy π is better than or equal to a policy π^{\prime} if its expected return is greater than or equal to that of π^{\prime} for all all states: $\pi \geq \pi^{\prime}$ iff $V_{\pi}(s) \geq V_{\pi^{\prime}}(s) \quad \forall s$

Optimal policy

- A policy π is better than or equal to a policy π^{\prime} if its expected return is greater than or equal to that of π^{\prime} for all all states: $\pi \geq \pi^{\prime}$ iff $V_{\pi}(s) \geq V_{\pi^{\prime}}(s) \quad \forall s$
- Optimal value function: $V_{*}=\max V_{\pi}(s)=\max \mathbb{E}_{\pi}\left[g_{t} \mid s_{t}=s\right]$
- Optimal state-action value: $Q_{*}(s, a)=\max _{\pi} Q_{\pi}(s, a)$

Optimal policy

- A policy π is better than or equal to a policy π^{\prime} if its expected return is greater than or equal to that of π^{\prime} for all all states: $\pi \geq \pi^{\prime}$ iff $V_{\pi}(s) \geq V_{\pi^{\prime}}(s) \quad \forall s$
- Optimal value function: $V_{*}=\max _{\pi} V_{\pi}(s)=\max _{\pi} \mathbb{E}_{\pi}\left[g_{t} \mid s_{t}=s\right]$
- Optimal state-action value: $Q_{*}(s, a)=\max _{\pi} Q_{\pi}(s, a)$
- Bellman optimal equation for state value: $V_{*}(s)=\max _{a} \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left(r+\gamma V_{*}\left(s^{\prime}\right)\right)$
- Bellman optimal equation for state-action value:

$$
Q_{*}(s, a)=\sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left(r+\gamma \max _{a^{\prime}} Q_{*}\left(s^{\prime}, a^{\prime}\right)\right)
$$

Example

- $V_{*}^{1}(f)=0, V_{*}^{1}(s)=1, V_{*}^{1}(m)=\frac{7}{5}$

Example

- $V_{*}^{1}(f)=0, V_{*}^{1}(s)=1, V_{*}^{1}(m)=\frac{7}{5}$
- $V_{*}^{2}(f)=\max \left\{-\frac{1}{5}+\frac{2}{5} \times 1,0+0\right\}=\frac{1}{5}$,

Example

- $V_{*}^{1}(f)=0, V_{*}^{1}(s)=1, V_{*}^{1}(m)=\frac{7}{5}$
- $V_{*}^{2}(f)=\max \left\{-\frac{1}{5}+\frac{2}{5} \times 1,0+0\right\}=\frac{1}{5}$,

$$
V_{*}^{2}(s)=\max \left\{1+\frac{7}{5}, \frac{4}{5}+\frac{3}{5} \times \frac{7}{5}\right\}=\frac{12}{5},
$$

Example

- $V_{*}^{1}(f)=0, V_{*}^{1}(s)=1, V_{*}^{1}(m)=\frac{7}{5}$
- $V_{*}^{2}(f)=\max \left\{-\frac{1}{5}+\frac{2}{5} \times 1,0+0\right\}=\frac{1}{5}$,

$$
V_{*}^{2}(s)=\max \left\{1+\frac{7}{5}, \frac{4}{5}+\frac{3}{5} \times \frac{7}{5}\right\}=\frac{12}{5},
$$

$$
V_{*}^{2}(m)=\max \left\{1+\frac{7}{5}, \frac{7}{5}+\frac{4}{5} \times \frac{7}{5}\right\}=2.52
$$

Example

- $V_{*}^{1}(f)=0, V_{*}^{1}(s)=1, V_{*}^{1}(m)=\frac{7}{5}$
- $V_{*}^{2}(f)=\max \left\{-\frac{1}{5}+\frac{2}{5} \times 1,0+0\right\}=\frac{1}{5}$,

$$
V_{*}^{2}(s)=\max \left\{1+\frac{7}{5}, \frac{4}{5}+\frac{3}{5} \times \frac{7}{5}\right\}=\frac{12}{5},
$$

$$
V_{*}^{2}(m)=\max \left\{1+\frac{7}{5}, \frac{7}{5}+\frac{4}{5} \times \frac{7}{5}\right\}=2.52
$$

Iterative policy evaluation

- Steps to determine $V(s)$ given a policy:
initialize $V(s)=0 \quad \forall s$
do:

$$
\begin{aligned}
& \Delta=0 \\
& \text { for } s \in S \text { do: } \\
& \quad v=V(s) \\
& \quad V(s)=\sum_{a} \pi(a \mid s) \sum_{s^{\prime}, a} p\left(s^{\prime}, r \mid s, a\right)\left(r+\gamma V\left(s^{\prime}\right)\right) \\
& \Delta=\max \{\Delta,\|v-V(s)\|\}
\end{aligned}
$$

until $\Delta<\epsilon$

Policy iteration

- Steps for determining policy:
initialize $V(s), \pi(s)$
do:
Run iterative policy evaluation (compute V)
convergence $=$ True
for $s \in S$ do:

$$
\begin{aligned}
& a=\pi(s) \\
& \pi(s)=\arg \max _{a} \sum_{s^{\prime}, a} p\left(s^{\prime}, r \mid s, a\right)\left(r+\gamma V\left(s^{\prime}\right)\right) \\
& \text { if } a \neq \pi(s) \text { then: convergence }=\text { False }
\end{aligned}
$$

until convergence

Value iteration

- Steps are as follows
initialize $Q(s, a)=0 \quad \forall s, a$
do:

$$
\begin{aligned}
& \text { for }(s, a) \in(S, A) \text { do: } \\
& \quad \begin{array}{l}
q=Q(s, a) \\
Q(s, a)=r(s, a)+\gamma \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right) \max _{a^{\prime}} Q\left(s^{\prime}, a^{\prime}\right) \\
\Delta=\max \{\Delta,\|v-V(s)\|\}
\end{array}
\end{aligned}
$$

until $\Delta<\epsilon$

Model based RL

- To model the transition relation and rewards based on states, actions and rewards experienced, $\left(s, a, r, s^{\prime}\right)$
- Let the agent make action and observes the states and rewards
- Transition can be estimated as: $T\left(s, a, s^{\prime}\right)=\frac{N\left(s, a, s^{\prime}\right)+1}{N(s, a)+|S|}$, where $N\left(s, a, s^{\prime}\right)$ - number of times the agent was in s, moves to s^{\prime} on action s, $N(s, a)=\sum_{s^{\prime}} N\left(s, a, s^{\prime}\right)$
- Reward function can be estimated as: $R(s, a)=\frac{\sum_{(s, a)} r(s, a)}{N(s, a)}$

Monte Carlo sampling

- It considers experiences is divided into episodes that terminates
- Reward value can be computed only when after termination
- Example: incremental mean computation
- Mean at time step t is updated based on current value x_{t} and mean at time $(t-1)$
- $\mu_{t}=\frac{1}{t} \sum_{i=1}^{t} x_{i}=\mu_{t-1}+\frac{1}{t}\left(x_{t}-\mu_{t-1}\right)$
- For MDP, $V\left(s_{t}\right)=V\left(s_{t}\right)+\alpha\left(g_{t}-V\left(s_{t}\right)\right), g_{t}$ actual return

Monte Carlo prediction

- Steps are as follows
initialize $V(s)=0$, return $(s)=\emptyset$
do:
Generate episode of π
for $s \in S$ do:
$g=$ return following the first occurence of s
$\operatorname{return}(s)=\operatorname{return}(s) \cup g$
$V(s)=\mu($ return $(s))$
until convergence

Temporal difference

- It also considers experience to solve the prediction problem
- Reward value is computed only until the next time step (Monte Carlo considers termination)
- For MDP, $V\left(s_{t}\right)=V\left(s_{t}\right)+\alpha\left(r_{t+1}+\gamma V\left(s_{t+1}\right)-V\left(s_{t}\right)\right)$

Temporal difference prediction

- Steps for determining $V(s)$ are as follows
initialize $V(s)=0$
do:
Generate episode of π
for $s \in S$ do:
$a=$ action given by π at s
Take action a, observe r, s^{\prime}

$$
\begin{aligned}
& V(s)=V(s)+\alpha\left(r+\gamma V\left(s^{\prime}\right)-V(s)\right) \\
& s=s^{\prime}
\end{aligned}
$$

until s is terminal

Q-Learning

- It is a model free learning method, directly estimates the a value function
- In model based we estimate T and R using value iteration. Given T and R we can compute $Q(s, a)=R(s, a)+\gamma \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right) \max _{a^{\prime}} Q\left(s^{\prime}, a^{\prime}\right)$
- In Q-learning, we estimate $Q(s, a)=Q(s, a)+\alpha\left(r+\gamma \max _{a^{\prime}} Q\left(s^{\prime}, a^{\prime}\right)-Q(s, a)\right)$

Q-Learning

- It is a model free learning method, directly estimates the a value function
- In model based we estimate T and R using value iteration. Given T and R we can compute $Q(s, a)=R(s, a)+\gamma \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right) \max _{a^{\prime}} Q\left(s^{\prime}, a^{\prime}\right)$
- In Q-learning, we estimate $Q(s, a)=Q(s, a)+\alpha\left(r+\gamma \max _{a^{\prime}} Q\left(s^{\prime}, a^{\prime}\right)-Q(s, a)\right)$
- Steps:
initialize $Q(s, a)=0$; Select start state s_{0} do:
$a=$ select an action based on ϵ-greedy strategy

$$
q=Q(s, a)
$$

Take action a to get reward r and next state s^{\prime}

$$
\begin{aligned}
& Q(s, a)=Q(s, a)+\alpha\left(r+\gamma \max _{a^{\prime}} Q\left(s^{\prime}, a^{\prime}\right)-Q(s, a)\right) \\
& \Delta=\max \{\Delta,\|q-Q(s, a)\|\} ; \quad s=s^{\prime}
\end{aligned}
$$

until Δ is less than a given threshold

SARSA

- In Q-learning, we estimate $Q(s, a)=Q(s, a)+\alpha\left(r+\gamma \max _{a^{\prime}} Q\left(s^{\prime}, a^{\prime}\right)-Q(s, a)\right)$
- In SARSA, we estimate $Q(s, a)=Q(s, a)+\alpha\left(r+\gamma Q\left(s^{\prime}, a^{\prime}\right)-Q(s, a)\right)$
- It needs ($s, a, r, s^{\prime}, a^{\prime}$) tuple for learning
- On policy vs Off policy

State value function approximation

- A neural network may be used to estimate $V_{\theta}(s) \approx V_{\pi}(s)$ or $Q_{\theta}(s, a) \approx Q_{\pi}(s, a)$ or a policy $p_{\theta}(a \mid s)$

State value function approximation

- A neural network may be used to estimate $V_{\theta}(s) \approx V_{\pi}(s)$ or $Q_{\theta}(s, a) \approx Q_{\pi}(s, a)$ or a policy $p_{\theta}(a \mid s)$
- Our goal is to find θ such that MSE between $V_{\pi}(s)$ and $V_{\theta}(s)$ is minimized

State value function approximation

- A neural network may be used to estimate $V_{\theta}(s) \approx V_{\pi}(s)$ or $Q_{\theta}(s, a) \approx Q_{\pi}(s$, a) or a policy $p_{\theta}(a \mid s)$
- Our goal is to find θ such that MSE between $V_{\pi}(s)$ and $V_{\theta}(s)$ is minimized
- $J(\theta)=\frac{1}{2} \mathbb{E}_{s}\left[\left(V_{\pi}(s)-V_{\theta}(s)\right)^{2}\right]$

State value function approximation

- A neural network may be used to estimate $V_{\theta}(s) \approx V_{\pi}(s)$ or $Q_{\theta}(s, a) \approx Q_{\pi}(s, a)$ or a policy $p_{\theta}(a \mid s)$
- Our goal is to find θ such that MSE between $V_{\pi}(s)$ and $V_{\theta}(s)$ is minimized
- $J(\theta)=\frac{1}{2} \mathbb{E}_{s}\left[\left(V_{\pi}(s)-V_{\theta}(s)\right)^{2}\right]=\frac{1}{2 S} \sum_{s \in S}\left[\left(V_{\pi}(s)-V_{\theta}(s)\right)^{2}\right]$

State value function approximation

- A neural network may be used to estimate $V_{\theta}(s) \approx V_{\pi}(s)$ or $Q_{\theta}(s, a) \approx Q_{\pi}(s, a)$ or a policy $p_{\theta}(a \mid s)$
- Our goal is to find θ such that MSE between $V_{\pi}(s)$ and $V_{\theta}(s)$ is minimized
- $J(\theta)=\frac{1}{2} \mathbb{E}_{s}\left[\left(V_{\pi}(s)-V_{\theta}(s)\right)^{2}\right]=\frac{1}{2 S} \sum_{s \in S}\left[\left(V_{\pi}(s)-V_{\theta}(s)\right)^{2}\right] \approx \sum_{s \in S} \mu(s)\left[\left(V_{\pi}(s)-V_{\theta}(s)\right)^{2}\right]$

State value function approximation

- A neural network may be used to estimate $V_{\theta}(s) \approx V_{\pi}(s)$ or $Q_{\theta}(s, a) \approx Q_{\pi}(s$, a) or a policy $p_{\theta}(a \mid s)$
- Our goal is to find θ such that MSE between $V_{\pi}(s)$ and $V_{\theta}(s)$ is minimized
- $J(\theta)=\frac{1}{2} \mathbb{E}_{s}\left[\left(V_{\pi}(s)-V_{\theta}(s)\right)^{2}\right]=\frac{1}{2 S} \sum_{s \in S}\left[\left(V_{\pi}(s)-V_{\theta}(s)\right)^{2}\right] \approx \sum_{s \in S} \mu(s)\left[\left(V_{\pi}(s)-V_{\theta}(s)\right)^{2}\right]$
- Gradient: $\nabla_{\theta} J(\theta)=-\mathbb{E}_{s}\left[\left(V_{\pi}(s)-V_{\theta}(s)\right) \nabla_{\theta} V_{\theta}(s)\right]$
- For gradient update: $\Delta \theta=-\alpha \nabla_{\theta} J(\theta)=\alpha \mathbb{E}_{s}\left[\left(V_{\pi}(s)-V_{\theta}(s)\right) \nabla_{\theta} V_{\theta}(s)\right]$

State value function approximation

- A neural network may be used to estimate $V_{\theta}(s) \approx V_{\pi}(s)$ or $Q_{\theta}(s, a) \approx Q_{\pi}(s$, a) or a policy $p_{\theta}(a \mid s)$
- Our goal is to find θ such that MSE between $V_{\pi}(s)$ and $V_{\theta}(s)$ is minimized
- $J(\theta)=\frac{1}{2} \mathbb{E}_{s}\left[\left(V_{\pi}(s)-V_{\theta}(s)\right)^{2}\right]=\frac{1}{2 S} \sum_{s \in S}\left[\left(V_{\pi}(s)-V_{\theta}(s)\right)^{2}\right] \approx \sum_{s \in S} \mu(s)\left[\left(V_{\pi}(s)-V_{\theta}(s)\right)^{2}\right]$
- Gradient: $\nabla_{\theta} J(\theta)=-\mathbb{E}_{s}\left[\left(V_{\pi}(s)-V_{\theta}(s)\right) \nabla_{\theta} V_{\theta}(s)\right]$
- For gradient update: $\Delta \theta=-\alpha \nabla_{\theta} J(\theta)=\alpha \mathbb{E}_{s}\left[\left(V_{\pi}(s)-V_{\theta}(s)\right) \nabla_{\theta} V_{\theta}(s)\right]$
- If we have single sample (like SGD), $\Delta \theta=\alpha \nabla_{\theta} J(\theta)=\alpha\left[\left(V_{\pi}(s)-V_{\theta}(s)\right) \nabla_{\theta} V_{\theta}(s)\right]$

State value function approximation

- A neural network may be used to estimate $V_{\theta}(s) \approx V_{\pi}(s)$ or $Q_{\theta}(s, a) \approx Q_{\pi}(s$, a) or a policy $p_{\theta}(a \mid s)$
- Our goal is to find θ such that MSE between $V_{\pi}(s)$ and $V_{\theta}(s)$ is minimized
- $J(\theta)=\frac{1}{2} \mathbb{E}_{s}\left[\left(V_{\pi}(s)-V_{\theta}(s)\right)^{2}\right]=\frac{1}{2 S} \sum_{s \in S}\left[\left(V_{\pi}(s)-V_{\theta}(s)\right)^{2}\right] \approx \sum_{s \in S} \mu(s)\left[\left(V_{\pi}(s)-V_{\theta}(s)\right)^{2}\right]$
- Gradient: $\nabla_{\theta} J(\theta)=-\mathbb{E}_{s}\left[\left(V_{\pi}(s)-V_{\theta}(s)\right) \nabla_{\theta} V_{\theta}(s)\right]$
- For gradient update: $\Delta \theta=-\alpha \nabla_{\theta} J(\theta)=\alpha \mathbb{E}_{s}\left[\left(V_{\pi}(s)-V_{\theta}(s)\right) \nabla_{\theta} V_{\theta}(s)\right]$
- If we have single sample (like SGD), $\Delta \theta=\alpha \nabla_{\theta} J(\theta)=\alpha\left[\left(V_{\pi}(s)-V_{\theta}(s)\right) \nabla_{\theta} V_{\theta}(s)\right]$
- For Monte Carlo: $\Delta \theta=\alpha\left[\left(g-V_{\theta}(s)\right) \nabla_{\theta} V_{\theta}(s)\right]$

State value function approximation

- A neural network may be used to estimate $V_{\theta}(s) \approx V_{\pi}(s)$ or $Q_{\theta}(s, a) \approx Q_{\pi}(s, a)$ or a policy $p_{\theta}(a \mid s)$
- Our goal is to find θ such that MSE between $V_{\pi}(s)$ and $V_{\theta}(s)$ is minimized
- $J(\theta)=\frac{1}{2} \mathbb{E}_{s}\left[\left(V_{\pi}(s)-V_{\theta}(s)\right)^{2}\right]=\frac{1}{2 S} \sum_{s \in S}\left[\left(V_{\pi}(s)-V_{\theta}(s)\right)^{2}\right] \approx \sum_{s \in S} \mu(s)\left[\left(V_{\pi}(s)-V_{\theta}(s)\right)^{2}\right]$
- Gradient: $\nabla_{\theta} J(\theta)=-\mathbb{E}_{s}\left[\left(V_{\pi}(s)-V_{\theta}(s)\right) \nabla_{\theta} V_{\theta}(s)\right]$
- For gradient update: $\Delta \theta=-\alpha \nabla_{\theta} J(\theta)=\alpha \mathbb{E}_{s}\left[\left(V_{\pi}(s)-V_{\theta}(s)\right) \nabla_{\theta} V_{\theta}(s)\right]$
- If we have single sample (like SGD), $\Delta \theta=\alpha \nabla_{\theta} J(\theta)=\alpha\left[\left(V_{\pi}(s)-V_{\theta}(s)\right) \nabla_{\theta} V_{\theta}(s)\right]$
- For Monte Carlo: $\Delta \theta=\alpha\left[\left(g-V_{\theta}(s)\right) \nabla_{\theta} V_{\theta}(s)\right]$
- For Temporal Difference: $\Delta \theta=\alpha\left[\left(r+\gamma V_{\theta}\left(s^{\prime}\right)-V_{\theta}(s)\right) \nabla_{\theta} V_{\theta}(s)\right]$

Action value function approximation

- Need to estimate $Q_{\theta}(s, a)$
- Our goal is to find θ such that MSE between $Q_{\pi}(s, a)$ and $Q_{\theta}(s, a)$ is minimized

Action value function approximation

- Need to estimate $Q_{\theta}(s, a)$
- Our goal is to find θ such that MSE between $Q_{\pi}(s, a)$ and $Q_{\theta}(s, a)$ is minimized
- $J(\theta)=\frac{1}{2} \mathbb{E}_{(s, a) \sim \pi}\left[\left(Q_{\pi}(s, a)-Q_{\theta}(s, a)\right)^{2}\right]$

Action value function approximation

- Need to estimate $Q_{\theta}(s, a)$
- Our goal is to find θ such that MSE between $Q_{\pi}(s, a)$ and $Q_{\theta}(s, a)$ is minimized
- $J(\theta)=\frac{1}{2} \mathbb{E}_{(s, a) \sim \pi}\left[\left(Q_{\pi}(s, a)-Q_{\theta}(s, a)\right)^{2}\right]$
- Gradient: $\nabla_{\theta} J(\theta)=-\mathbb{E}_{(s, a) \sim \pi}\left[\left(Q_{\pi}(s, a)-Q_{\theta}(s, a)\right) \nabla_{\theta} Q_{\theta}(s, a)\right]$

Action value function approximation

- Need to estimate $Q_{\theta}(s, a)$
- Our goal is to find θ such that MSE between $Q_{\pi}(s, a)$ and $Q_{\theta}(s, a)$ is minimized
- $J(\theta)=\frac{1}{2} \mathbb{E}_{(s, a) \sim \pi}\left[\left(Q_{\pi}(s, a)-Q_{\theta}(s, a)\right)^{2}\right]$
- Gradient: $\nabla_{\theta} J(\theta)=-\mathbb{E}_{(s, a) \sim \pi}\left[\left(Q_{\pi}(s, a)-Q_{\theta}(s, a)\right) \nabla_{\theta} Q_{\theta}(s, a)\right]$
- For gradient update: $\Delta \theta=-\alpha \nabla_{\theta} J(\theta)=\alpha \mathbb{E}_{s}\left[\left(Q_{\pi}(s, a)-Q_{\theta}(s, a)\right) \nabla_{\theta} Q_{\theta}(s, a)\right]$

Action value function approximation

- Need to estimate $Q_{\theta}(s, a)$
- Our goal is to find θ such that MSE between $Q_{\pi}(s, a)$ and $Q_{\theta}(s, a)$ is minimized
- $J(\theta)=\frac{1}{2} \mathbb{E}_{(s, a) \sim \pi}\left[\left(Q_{\pi}(s, a)-Q_{\theta}(s, a)\right)^{2}\right]$
- Gradient: $\nabla_{\theta} J(\theta)=-\mathbb{E}_{(s, a) \sim \pi}\left[\left(Q_{\pi}(s, a)-Q_{\theta}(s, a)\right) \nabla_{\theta} Q_{\theta}(s, a)\right]$
- For gradient update: $\Delta \theta=-\alpha \nabla_{\theta} J(\theta)=\alpha \mathbb{E}_{s}\left[\left(Q_{\pi}(s, a)-Q_{\theta}(s, a)\right) \nabla_{\theta} Q_{\theta}(s, a)\right]$
- If we have single sample, $\Delta \theta=\alpha \nabla_{\theta} J(\theta)=\alpha\left[\left(Q_{\pi}(s, a)-Q_{\theta}(s, a)\right) \nabla_{\theta} Q_{\theta}(s, a)\right]$

Action value function approximation

- Need to estimate $Q_{\theta}(s, a)$
- Our goal is to find θ such that MSE between $Q_{\pi}(s, a)$ and $Q_{\theta}(s, a)$ is minimized
- $J(\theta)=\frac{1}{2} \mathbb{E}_{(s, a) \sim \pi}\left[\left(Q_{\pi}(s, a)-Q_{\theta}(s, a)\right)^{2}\right]$
- Gradient: $\nabla_{\theta} J(\theta)=-\mathbb{E}_{(s, a) \sim \pi}\left[\left(Q_{\pi}(s, a)-Q_{\theta}(s, a)\right) \nabla_{\theta} Q_{\theta}(s, a)\right]$
- For gradient update: $\Delta \theta=-\alpha \nabla_{\theta} J(\theta)=\alpha \mathbb{E}_{s}\left[\left(Q_{\pi}(s, a)-Q_{\theta}(s, a)\right) \nabla_{\theta} Q_{\theta}(s, a)\right]$
- If we have single sample, $\Delta \theta=\alpha \nabla_{\theta} J(\theta)=\alpha\left[\left(Q_{\pi}(s, a)-Q_{\theta}(s, a)\right) \nabla_{\theta} Q_{\theta}(s, a)\right]$
- For Monte Carlo: $\Delta \theta=\alpha\left[\left(g-Q_{\theta}(s, a)\right) \nabla_{\theta} Q_{\theta}(s, a)\right]$
- For Temporal Difference: $\Delta \theta=\alpha\left[\left(r+\gamma Q_{\theta}\left(s^{\prime}, a^{\prime}\right)-Q_{\theta}(s, a)\right) \nabla_{\theta} Q_{\theta}(s, a)\right]$
- Can diverge using neural network due to
- Correlation between samples
- Non-stationary target

Experience replay

- Neural network needs to learn from states, action, reward information ie. $e_{i}=\left(s_{i}, a_{i}, r_{i}, s_{i}^{\prime}\right)$
- Successive samples are usually correlated
- Need to use replay buffer that stores e_{i}
- Sample from the buffer when updating Q values

Neural fitted Q-iteration (NFQ)

- Our goal is to find θ such that MSE between $Q_{*}(s, a)$ and $Q_{\theta}(s, a)$ is minimized
- Loss: $J(\theta)=\frac{1}{2} \mathbb{E}_{(s, a) \sim \pi}\left[\left(Q_{*}(s, a)-Q_{\theta}(s, a)\right)^{2}\right]$
- For gradient update: $\Delta \theta=\alpha\left[\left(Q_{*}(s, a)-Q_{\theta}(s, a)\right) \nabla_{\theta} Q_{\theta}(s, a)\right]$
- Since we do not know $Q_{*}(s, a)$, optimal action value can be approximated as $Q_{*}(s, a) \approx$ $r+\gamma \max _{a^{\prime}} Q_{\theta}\left(s^{\prime}, a^{\prime}\right)$
- Hence network parameters updated by $\Delta \theta=\alpha\left[r+\gamma \max _{a^{\prime}} Q_{\theta}\left(s^{\prime}, a^{\prime}\right)-Q_{\theta}(s, a)\right] \nabla_{\theta} Q_{\theta}(s, a)$

Deep Q-Network (DQN)

- It uses a second neural network
- In NFQ, we set the target as $y_{N F Q}=r+\gamma \max _{a^{\prime}} Q_{\theta}\left(s^{\prime}, a^{\prime}\right)$
- In case of DQN, we use $y_{D Q N}=r+\gamma \max _{a^{\prime}} Q_{\theta-}\left(s^{\prime}, a^{\prime}\right)$
- DQN minimizes MSE loss

$$
\left.L\left(\theta_{i}\right)=\mathbb{E}_{\left(s, a, r, s^{\prime}\right) \sim D_{i}}\left[\left(y_{i}-Q_{\theta_{i}}(s, a)\right)^{2}\right]=\mathbb{E}_{\left(s, a, r, s^{\prime}\right) \sim D_{i}}\left[r+\gamma \max _{a^{\prime}} Q_{\theta_{-}}\left(s^{\prime}, a^{\prime}\right)-Q_{\theta_{i}}(s, a)\right)^{2}\right]
$$

- Parameters θ_{-}of the target network $Q_{\theta_{-}}\left(s^{\prime}, a^{\prime}\right)$ are frozen for multiple steps, θ_{i} are updated using SGD
- $\nabla_{\theta_{i}} L\left(\theta_{i}\right)=\mathbb{E}_{\left(s, a, r, s^{\prime}\right) \sim D_{i}}\left[\left(r+\gamma \max _{a^{\prime}} Q_{\theta_{-}}\left(s^{\prime}, a^{\prime}\right)-Q_{\theta_{i}}(s, a)\right) \nabla_{\theta_{i}} Q_{\theta_{i}}(s, a)\right]$

DQN Algorithm

- Steps are as follows:
initialize (1) $D=\emptyset$ - empty reply buffer, (2) online Q_{θ} network parameters with θ with random values, (3) set for target network $Q_{\theta_{-}}$parameters $\theta_{-}=\theta_{\text {, (4) start state } s=s_{0}}$ repeat:
for each episode do:
run ϵ-greedy policy based Q_{θ} network
collect transitions (s, a, r, s^{\prime}) in D
Select a sample (s, a, r, s^{\prime}) from D
$q=Q_{\theta}(s, a) ;$
$Q_{\theta}(s, a)=Q_{\theta}(s, a)+\alpha\left(r+\gamma \max _{a^{\prime}} Q_{\theta_{-}}\left(s^{\prime}, a^{\prime}\right)-Q_{\theta}(s, a)\right)$
$\Delta=\max \left\{\Delta,\left\|q-Q_{\theta}(s, a)\right\|\right\}$
$s=s^{\prime}$
update $\theta_{-}=\theta$ every k number of episodes
until stopping criteria

References

- Reinforcement Learning: An Introduction by Andrew Barto and Richard S. Sutton
- Human-level control through deep reinforcement learning by Deep Mind, Google

Example: Recycling Robot

- A robot does one of the following at each time step
- Actively search for a can
- Remain stationary and wait for someone to bring a can
- Go back to home base to recharge battery

Recycling Robot: Transition relation

s	s^{\prime}	a	$p\left(s^{\prime} \mid s, a\right)$	$r\left(s, a, s^{\prime}\right)$
high	high	search	α	$r_{\text {search }}$
high	low	search	$1-\alpha$	$r_{\text {search }}$
low	high	search	$1-\beta$	-3
low	low	search	β	$r_{\text {search }}$
high	high	wait	1	$r_{\text {wait }}$
high	low	wait	0	$r_{\text {wait }}$
low	high	wait	0	$r_{\text {wait }}$
low	low	wait	1	$r_{\text {wait }}$
low	high	recharge	1	0
low	low	recharge	0	0

Example

Optimal value computation

- For recycling robot - h - high, I - low, s - search, w - wait, r - recharge

$$
\begin{aligned}
& V^{*}(h)=\max \left\{\begin{array}{l}
p(h \mid h, s)\left[r(h, s, h)+\gamma V^{*}(h)\right]+p(\| h, s)\left[r(h, s, I)+\gamma V^{*}(I)\right], \\
p(h \mid h, w)\left[r(h, w, h)+\gamma V^{*}(h)\right]+p(\| h, w)\left[r(h, w, I)+\gamma V^{*}(I)\right]
\end{array}\right\} \\
& V^{*}(h)=\max \left\{r_{s}+\gamma\left[\alpha V^{*}(h)+(1-\alpha) V^{*}(I)\right], r_{w}+\gamma V^{*}(h)\right\} \\
& V^{*}(I)=\max \left\{\begin{array}{l}
\beta r_{s}-3(1-\beta)+\gamma\left[(1-\beta) V^{*}(h)+\beta V^{*}(I)\right] \\
r_{w}+\gamma V^{*}(I), \\
\gamma V^{*}(h)
\end{array}\right\}
\end{aligned}
$$

