Introduction to Deep Learning

Tutorial

Arijit Mondal
Dept. of Computer Science \& Engineering Indian Institute of Technology Patna arijit@iitp.ac.in

Problem-1

- In typical gradient descent, we take steps of a constant size, so that:

$$
w_{t+1}=w_{t}-\epsilon \nabla_{w} L\left(w_{t}\right)
$$

In the following, assume that L is an arbitrary differentiable function.

- For very small ϵ what will generally be true? (a) $L\left(w_{t}\right) \geq L\left(\theta_{t+1}\right)$, (b) $L\left(w_{t}\right) \leq L\left(w_{t+1}\right)$, (c) Cannot say

Problem-1

- In typical gradient descent, we take steps of a constant size, so that:

$$
w_{t+1}=w_{t}-\epsilon \nabla_{w} L\left(w_{t}\right)
$$

In the following, assume that L is an arbitrary differentiable function.

- For very small ϵ what will generally be true? (a) $L\left(w_{t}\right) \geq L\left(\theta_{t+1}\right)$, (b) $L\left(w_{t}\right) \leq L\left(w_{t+1}\right)$, (c) Cannot say
- For a very big ϵ what will generally be true? (a) $L\left(w_{t}\right) \geq L\left(\theta_{t+1}\right)$, (b) $L\left(w_{t}\right) \leq L\left(w_{t+1}\right)$, (c) Cannot say

Problem-1

- In typical gradient descent, we take steps of a constant size, so that:

$$
w_{t+1}=w_{t}-\epsilon \nabla_{w} L\left(w_{t}\right)
$$

In the following, assume that L is an arbitrary differentiable function.

- For very small ϵ what will generally be true? (a) $L\left(w_{t}\right) \geq L\left(\theta_{t+1}\right)$, (b) $L\left(w_{t}\right) \leq L\left(w_{t+1}\right)$, (c) Cannot say
- For a very big ϵ what will generally be true? (a) $L\left(w_{t}\right) \geq L\left(\theta_{t+1}\right)$,
(b) $L\left(w_{t}\right) \leq L\left(w_{t+1}\right)$, (c) Cannot say
- We would like to pick a perfect step size on every step and propose a new update rule that selects ϵ^{\prime} to be the value step-size ϵ that decreases the objective as much as possible in the direction $\nabla_{w} L(w)$ and then uses ϵ^{\prime} as the step size:

$$
\epsilon^{\prime}=\arg \min _{\epsilon} L\left(w_{t}-\nabla_{w} L\left(w_{t}\right)\right) ; \quad w_{t+1}=w_{t}-\epsilon^{\prime} \nabla_{w} L\left(w_{t}\right)
$$

(a) $L\left(w_{t}\right) \geq L\left(\theta_{t+1}\right)$,
(b) $L\left(w_{t}\right) \leq L\left(w_{t+1}\right)$,
(c) Cannot say

Problem-2

- How many weights are in a fully connected neural network with input dimension 5 , output dimension 1, and 3 hidden layers (not including the output layer) with 7 activation units each (no bias terms)?

Problem-2

- How many weights are in a fully connected neural network with input dimension 5 , output dimension 1, and 3 hidden layers (not including the output layer) with 7 activation units each (no bias terms)?
- Find a relation between $\tanh (x)$ and $\sigma(2 x)$

Problem-3

- For each of the following loss functions which activation functions in the last layer is appropriate?
- Negative Log-Likelihood Multiclass (NLLM) loss: a. Linear, b. Softmax, c. Sigmoid

Problem-3

- For each of the following loss functions which activation functions in the last layer is appropriate?
- Negative Log-Likelihood Multiclass (NLLM) loss: a. Linear, b. Softmax, c. Sigmoid
- Squared loss: a. Linear, b. Softmax, c. Sigmoid

Problem-3

- For each of the following loss functions which activation functions in the last layer is appropriate?
- Negative Log-Likelihood Multiclass (NLLM) loss: a. Linear, b. Softmax, c. Sigmoid
- Squared loss: a. Linear, b. Softmax, c. Sigmoid
- For each of the following applications which activation function is appropriate?
- Map words in a news page to a predicted numerical change in a stock market mean: a. Linear, b. Softmax

Problem-3

- For each of the following loss functions which activation functions in the last layer is appropriate?
- Negative Log-Likelihood Multiclass (NLLM) loss: a. Linear, b. Softmax, c. Sigmoid
- Squared loss: a. Linear, b. Softmax, c. Sigmoid
- For each of the following applications which activation function is appropriate?
- Map words in a news page to a predicted numerical change in a stock market mean: a. Linear, b. Softmax
- Map a satellite image to the probability it will rain at that location during the next day: a. Linear, b. Softmax

Problem-3

- For each of the following loss functions which activation functions in the last layer is appropriate?
- Negative Log-Likelihood Multiclass (NLLM) loss: a. Linear, b. Softmax, c. Sigmoid
- Squared loss: a. Linear, b. Softmax, c. Sigmoid
- For each of the following applications which activation function is appropriate?
- Map words in a news page to a predicted numerical change in a stock market mean: a. Linear, b. Softmax
- Map a satellite image to the probability it will rain at that location during the next day: a. Linear, b. Softmax
- Map words in an email to which one of a fixed set of folders it should be filed in: a. Linear, b. Softmax

Problem-4

- The function $f(x, y)=x^{2}+(x+6 y)^{4}$ has a minimum $f(0,0)=0$.
- What is the gradient of the function at $(1,1)$

Problem-4

- The function $f(x, y)=x^{2}+(x+6 y)^{4}$ has a minimum $f(0,0)=0$.
- What is the gradient of the function at $(1,1)$
- If we initialize gradient descent to $(1,1)$ with $\epsilon=0.0001$, what are the vlaues of (x, y) after the first iteration of gradient descent?

Problem-5

- Prove that if $\alpha=\mathrm{y}^{\top} \mathrm{A} x$ then $\frac{\partial \alpha}{\partial \mathrm{z}}=$

Problem-5

- Prove that if $\alpha=\mathrm{y}^{T} \mathrm{~A} x$ then $\frac{\partial \alpha}{\partial z}=\mathrm{x}^{T} \mathrm{~A}^{T} \frac{\partial \mathrm{y}}{\partial \mathrm{z}}+\mathrm{y}^{T} \mathrm{~A} \frac{\partial \mathrm{x}}{\partial \mathrm{z}}$

Problem-6

- We have N samples, $x_{1}, x_{2}, \ldots, x_{N}$ independently drawn from a normal distribution with known variance σ^{2} and unknown mean μ. Please derive the MLE estimator for the mean μ. Make sure to show all of your work.

Problem-6

- We have N samples, $x_{1}, x_{2}, \ldots, x_{N}$ independently drawn from a normal distribution with known variance σ^{2} and unknown mean μ. Please derive the MLE estimator for the mean μ. Make sure to show all of your work.
- Consider the following recurrence: $\left(x_{t+1}, y_{t+1}\right)=\left(f\left(x_{t}, y_{t}\right), g\left(x_{t}, y_{t}\right)\right)$. Here, $f()$ and $g()$ are multivariate functions. Derive an expression for $\frac{\partial x_{t+2}}{\partial x_{t}}$ in terms of only x_{t} and y_{t}.

Problem-6

- We have N samples, $x_{1}, x_{2}, \ldots, x_{N}$ independently drawn from a normal distribution with known variance σ^{2} and unknown mean μ. Please derive the MLE estimator for the mean μ. Make sure to show all of your work.
- Consider the following recurrence: $\left(x_{t+1}, y_{t+1}\right)=\left(f\left(x_{t}, y_{t}\right), g\left(x_{t}, y_{t}\right)\right)$. Here, $f()$ and $g()$ are multivariate functions. Derive an expression for $\frac{\partial x_{t+2}}{\partial x_{t}}$ in terms of only x_{t} and y_{t}.
- Consider a two-input neuron that multiplies its two inputs x_{1} and x_{2} to obtain the output 0 . Let L be the loss function that is computed at o. Suppose that you know that $\frac{\partial L}{\partial o}=5, x_{1}=2$ and $x_{2}=3$. Compute the values of $\frac{\partial L}{\partial x_{1}}, \frac{\partial L}{\partial x_{2}}$.

Problem-6

- We have N samples, $x_{1}, x_{2}, \ldots, x_{N}$ independently drawn from a normal distribution with known variance σ^{2} and unknown mean μ. Please derive the MLE estimator for the mean μ. Make sure to show all of your work.
- Consider the following recurrence: $\left(x_{t+1}, y_{t+1}\right)=\left(f\left(x_{t}, y_{t}\right), g\left(x_{t}, y_{t}\right)\right)$. Here, $f()$ and $g()$ are multivariate functions. Derive an expression for $\frac{\partial x_{t+2}}{\partial x_{t}}$ in terms of only x_{t} and y_{t}.
- Consider a two-input neuron that multiplies its two inputs x_{1} and x_{2} to obtain the output 0 . Let L be the loss function that is computed at o. Suppose that you know that $\frac{\partial L}{\partial o}=5, x_{1}=2$ and $x_{2}=3$. Compute the values of $\frac{\partial L}{\partial x_{1}}, \frac{\partial L}{\partial x_{2}}$.
- Consider the softmax as output function ie. $o_{i}=\operatorname{softmax}(v)=\frac{\exp \left(v_{i}\right)}{\sum_{k} \exp \left(v_{k}\right)}$. Show that $\frac{\partial o_{i}}{\partial v_{j}}$ is $o_{i}\left(1-o_{i}\right)$ when $i=j$. Find when $i \neq j$.

Problem-7

- Consider the gradient descent step: $x_{t+1}=x_{t}-\gamma g_{t}$. Consider the objective function as follows $f(x)=\frac{1}{2}\left(f_{1}(x)+f_{2}(x)\right)$ where $f_{1}(x)=\frac{1}{2}(x-2)^{2}$ and $f_{2}(x)=\frac{1}{2}(x+1)^{2}$. We apply SGD for optimization. Let us assume that we sample the subfunction f_{2} and we start from $x_{0}=0$. Find the new value of x ie. x_{1} (say). Find the relation between $f\left(x_{0}\right)$ and $f\left(x_{1}\right)$.

Problem-7

- Consider the gradient descent step: $x_{t+1}=x_{t}-\gamma g_{t}$. Consider the objective function as follows $f(x)=\frac{1}{2}\left(f_{1}(x)+f_{2}(x)\right)$ where $f_{1}(x)=\frac{1}{2}(x-2)^{2}$ and $f_{2}(x)=\frac{1}{2}(x+1)^{2}$. We apply SGD for optimization. Let us assume that we sample the subfunction f_{2} and we start from $x_{0}=0$. Find the new value of x ie. x_{1} (say). Find the relation between $f\left(x_{0}\right)$ and $f\left(x_{1}\right)$.
- Suppose each word is represented as unit vector having dimension d. Consider two words are represented as r_{1} and r_{2}. Show that Euclidean distance $\left\|r_{1}-r_{2}\right\|$ is a monotonically decreasing function of the dot product $r_{1}^{T} r_{2}$.

Problem-7

- Consider the gradient descent step: $x_{t+1}=x_{t}-\gamma g_{t}$. Consider the objective function as follows $f(x)=\frac{1}{2}\left(f_{1}(x)+f_{2}(x)\right)$ where $f_{1}(x)=\frac{1}{2}(x-2)^{2}$ and $f_{2}(x)=\frac{1}{2}(x+1)^{2}$. We apply SGD for optimization. Let us assume that we sample the subfunction f_{2} and we start from $x_{0}=0$. Find the new value of x ie. x_{1} (say). Find the relation between $f\left(x_{0}\right)$ and $f\left(x_{1}\right)$.
- Suppose each word is represented as unit vector having dimension d. Consider two words are represented as r_{1} and r_{2}. Show that Euclidean distance $\left\|r_{1}-r_{2}\right\|$ is a monotonically decreasing function of the dot product $r_{1}^{T} r_{2}$.
- Consider a binary classification problem. To avoid overlay confident prediction, we transform the prediction y to lie in the interval $[0.1,0.9]$. In other words, we take $y=0.8 \sigma(z)+0.1$ where σ denotes the logistic function. We still use the cross entropy loss. For a positive training example, sketch the cross entropy loss as a function of z.

Problem-8

- Consider the function $f(x, y)=\frac{1}{2}\left(x^{2}+b y^{2}\right)$ where $0<b \leq 1$. We apply gradient descent with exact line search method. Here the step size (α) is computed as follows $\alpha=\arg \min _{\alpha} f(x-$ $\left.\alpha \nabla_{x} f(x)\right)$. Let us assume that we start from $\left(x_{0}, y_{0}\right)=(b, 1)$. Find the value of $\left(x_{k}, y_{k}\right)$. Can you find any interesting property of two consecutive gradients?

Problem-8

- Consider the function $f(x, y)=\frac{1}{2}\left(x^{2}+b y^{2}\right)$ where $0<b \leq 1$. We apply gradient descent with exact line search method. Here the step size (α) is computed as follows $\alpha=\arg \min _{\alpha} f(x-$ $\left.\alpha \nabla_{x} f(x)\right)$. Let us assume that we start from $\left(x_{0}, y_{0}\right)=(b, 1)$. Find the value of $\left(x_{k}, y_{k}\right)$. Can you find any interesting property of two consecutive gradients?
- Let $\theta^{*} \in R^{d}$ and let $f(\theta)=\frac{1}{2}\left\|\theta-\theta^{*}\right\|^{2}$. Show that the Hessian of f is identity matrix.

Problem-8

- Consider the function $f(x, y)=\frac{1}{2}\left(x^{2}+b y^{2}\right)$ where $0<b \leq 1$. We apply gradient descent with exact line search method. Here the step size (α) is computed as follows $\alpha=\arg \min _{\alpha} f(x-$ $\left.\alpha \nabla_{x} f(x)\right)$. Let us assume that we start from $\left(x_{0}, y_{0}\right)=(b, 1)$. Find the value of $\left(x_{k}, y_{k}\right)$. Can you find any interesting property of two consecutive gradients?
- Let $\theta^{*} \in R^{d}$ and let $f(\theta)=\frac{1}{2}\left\|\theta-\theta^{*}\right\|^{2}$. Show that the Hessian of f is identity matrix.
- Let $X \in R^{n \times d}$ and $y \in R^{n}$. For $\theta \in R^{d}$ let $g(\theta)=\frac{1}{2}\|X \theta-y\|^{2}$. Show that the Hessian of g is $X^{\top} X$.

Problem-8

- Consider the function $f(x, y)=\frac{1}{2}\left(x^{2}+b y^{2}\right)$ where $0<b \leq 1$. We apply gradient descent with exact line search method. Here the step size (α) is computed as follows $\alpha=\arg \min _{\alpha} f(x-$ $\left.\alpha \nabla_{x} f(x)\right)$. Let us assume that we start from $\left(x_{0}, y_{0}\right)=(b, 1)$. Find the value of $\left(x_{k}, y_{k}\right)$. Can you find any interesting property of two consecutive gradients?
- Let $\theta^{*} \in R^{d}$ and let $f(\theta)=\frac{1}{2}\left\|\theta-\theta^{*}\right\|^{2}$. Show that the Hessian of f is identity matrix.
- Let $X \in R^{n \times d}$ and $y \in R^{n}$. For $\theta \in R^{d}$ let $g(\theta)=\frac{1}{2}\|X \theta-y\|^{2}$. Show that the Hessian of g is $X^{\top} X$.
- A random variable follows an exponential distribution with parameter $\lambda(\lambda>0)$ if it has the following density: $p(t)=\lambda e^{-\lambda t}, t \in[0, \infty)$. This distribution is often used to model waiting times between events. Imagine you are given i.i.d. data $T=\left(t_{1}, \ldots, t_{n}\right)$ where each t_{i} is modeled as being drawn from an exponential distribution with parameter λ. (a) Compute the log-probability of T given λ. (b) Solve for $\hat{\lambda}_{\text {MLE }}$

Problem-9

- Suppose $x \sim \operatorname{Uniform}([1,1])$ and $y=x+\epsilon$, where $\epsilon \sim \operatorname{Uniform}([-\gamma, \gamma])$ for some $\gamma>0$. Consider a predictor (for y) given by $f_{\theta}(x)=\theta_{1}+\theta_{2} x$, where $\theta \in R^{2}$. Evaluate the risk of f_{θ} with respect to the square loss. Your answer should be a deterministic expression only depending on θ_{1}, θ_{2} and γ.

