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Problem-1
• In typical gradient descent, we take steps of a constant size, so that:

wt+1 = wt − ϵ∇wL(wt)

In the following, assume that L is an arbitrary differentiable function.
• For very small ϵ what will generally be true? (a) L(wt) ≥ L(θt+1), (b) L(wt) ≤ L(wt+1),

(c) Cannot say

• For a very big ϵ what will generally be true? (a) L(wt) ≥ L(θt+1), (b) L(wt) ≤ L(wt+1),
(c) Cannot say

• We would like to pick a perfect step size on every step and propose a new update rule that
selects ϵ′ to be the value step-size ϵ that decreases the objective as much as possible in
the direction ∇wL(w) and then uses ϵ′ as the step size:

ϵ′ = arg min
ϵ

L(wt −∇wL(wt)); wt+1 = wt − ϵ′∇wL(wt)

(a) L(wt) ≥ L(θt+1), (b) L(wt) ≤ L(wt+1), (c) Cannot say
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Problem-2
• How many weights are in a fully connected neural network with input dimension 5, output

dimension 1, and 3 hidden layers (not including the output layer) with 7 activation units each
(no bias terms)?

• Find a relation between tanh(x) and σ(2x)
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Problem-3
• For each of the following loss functions which activation functions in the last layer is appro-

priate?
• Negative Log-Likelihood Multiclass (NLLM) loss: a. Linear, b. Softmax, c. Sigmoid

• Squared loss: a. Linear, b. Softmax, c. Sigmoid
• For each of the following applications which activation function is appropriate?

• Map words in a news page to a predicted numerical change in a stock market mean: a.
Linear, b. Softmax

• Map a satellite image to the probability it will rain at that location during the next day:
a. Linear, b. Softmax

• Map words in an email to which one of a fixed set of folders it should be filed in: a. Linear,
b. Softmax
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Problem-4
• The function f(x, y) = x2 + (x + 6y)4 has a minimum f(0, 0) = 0.

• What is the gradient of the function at (1, 1)

• If we initialize gradient descent to (1, 1) with ϵ = 0.0001, what are the vlaues of (x, y)
after the first iteration of gradient descent?
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Problem-5
• Prove that if α = yTAx then ∂α

∂z =

xTAT∂y
∂z + yTA∂x

∂z
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Problem-6
• We have N samples, x1, x2, . . . , xN independently drawn from a normal distribution with

known variance σ2 and unknown mean µ. Please derive the MLE estimator for the mean µ.
Make sure to show all of your work.

• Consider the following recurrence: (xt+1, yt+1) = (f(xt, yt), g(xt, yt)). Here, f() and g() are
multivariate functions. Derive an expression for ∂xt+2

∂xt
in terms of only xt and yt.

• Consider a two-input neuron that multiplies its two inputs x1 and x2 to obtain the output o.
Let L be the loss function that is computed at o. Suppose that you know that ∂L

∂o = 5, x1 = 2

and x2 = 3. Compute the values of ∂L
∂x1 , ∂L

∂x2 .

• Consider the softmax as output function ie. oi = softmax(v) = exp(vi)∑
k exp(vk)

. Show that ∂oi
∂vj

is
oi(1− oi) when i = j. Find when i ̸= j.
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Problem-7
• Consider the gradient descent step: xt+1 = xt − γgt. Consider the objective function as

follows f(x) = 1
2(f1(x) + f2(x)) where f1(x) = 1

2(x − 2)2 and f2(x) = 1
2(x + 1)2. We apply

SGD for optimization. Let us assume that we sample the subfunction f2 and we start from
x0 = 0. Find the new value of x ie. x1 (say). Find the relation between f(x0) and f(x1).

• Suppose each word is represented as unit vector having dimension d. Consider two words are
represented as r1 and r2. Show that Euclidean distance ∥r1−r2∥ is a monotonically decreasing
function of the dot product rT

1 r2.
• Consider a binary classification problem. To avoid overlay confident prediction, we transform

the prediction y to lie in the interval [0.1, 0.9]. In other words, we take y = 0.8σ(z) + 0.1

where σ denotes the logistic function. We still use the cross entropy loss. For a positive
training example, sketch the cross entropy loss as a function of z.
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Problem-8
• Consider the function f(x, y) = 1

2(x2+by2) where 0 < b ≤ 1. We apply gradient descent with
exact line search method. Here the step size (α) is computed as follows α = arg minα f(x −
α∇xf(x)). Let us assume that we start from (x0, y0) = (b, 1). Find the value of (xk, yk). Can
you find any interesting property of two consecutive gradients?

• Let θ∗ ∈ Rd and let f(θ) = 1
2∥θ − θ∗∥2. Show that the Hessian of f is identity matrix.

• Let X ∈ Rn×d and y ∈ Rn. For θ ∈ Rd let g(θ) = 1
2∥Xθ− y∥2. Show that the Hessian of g is

XTX.
• A random variable follows an exponential distribution with parameter λ (λ > 0) if it has the

following density: p(t) = λe−λt, t ∈ [0,∞). This distribution is often used to model waiting
times between events. Imagine you are given i.i.d. data T = (t1, . . . , tn) where each ti is
modeled as being drawn from an exponential distribution with parameter λ. (a) Compute
the log-probability of T given λ. (b) Solve for λ̂MLE
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Problem-9
• Suppose x ∼ Uniform([1, 1]) and y = x + ϵ, where ϵ ∼ Uniform([−γ, γ]) for some γ > 0.

Consider a predictor (for y) given by fθ(x) = θ1 + θ2x, where θ ∈ R2. Evaluate the risk of
fθ with respect to the square loss. Your answer should be a deterministic expression only
depending on θ1, θ2 and γ.


