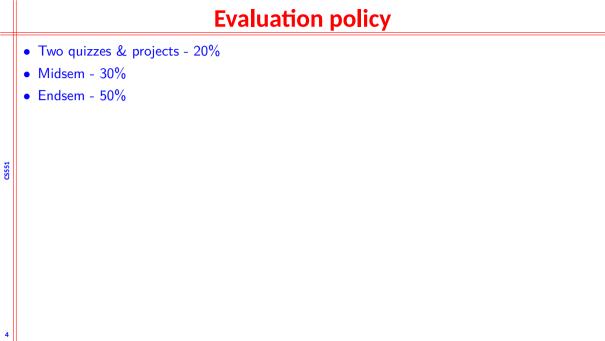
CS551: Introduction to Deep Learning

Ariiit Mondal

Dept. of Computer Science & Engineering Indian Institute of Technology Patna arijit@iitp.ac.in


1 CS551

	General Information
CS551	 Instructors Joydeep Chandra Arijit Mondal Teaching assistants Asres Shruti
2	• Course webpage: www.iitp.ac.in/~arijit/, then follow Teaching

Course structure

- Introduction to big data problem
- Neural network
- Deep Feedforward Network
- Introduction to open-source tools
- Regularization
- Optimization
- Convolutional Neural Network

- Recurrent Neural Network
- Transformer
- Graph Neural Network
- Generative Adversarial Network
- Autoencoder
- Deep Reinforcement Learning
- Apprilcations Time series, NLP, Vision

- Ian Goodfellow, Yoshua Bengio and Aaron Courville, "Deep Learning", MIT Press, 2016.
- Charu C Aggarwal, "Neural Networks and Deep Learning", Springer.
- Aston Zhang, Zachary C. Lipton, Mu Li, Alexander J. Smola, "Dive into Deep Learning"
- 5551 • Iddo Drori, "The Science of Deep Learning", Cambridge University Press
 - Simon O. Haykin, "Neural Networks and Learning Machines", Pearson Education India
 - Richard S. Sutton, Andrew G. Barto, "Reinforcement Learning: An Introduction", MIT Press
- Christopher M. Bishop, Hugh Bishop, "Deep Learning: Foundations and Concepts", Springer

	Problem space
	• Problems — a matter or situation regarded as unwelcome or harmful and needing to be dealt with and overcome
	Target is to solve the same on a computer
CS551	
7	

	Problem space
	• Problems — a matter or situation regarded as unwelcome or harmful and needing to be dealt with and overcome
	Target is to solve the same on a computer
CS551	 Problems can be intellectually challenging for human being but relatively straight forward for a computer Travelling salesman problem, chess
	 Problems can be easy for common people but difficult for computer (even expressing it in a formal way) Identifying an object, car (say), in a picture
7	

	Problem space
	• Problems — a matter or situation regarded as unwelcome or harmful and needing to be dealt with and overcome
	• Target is to solve the same on a computer
CS551	 Problems can be intellectually challenging for human being but relatively straight forward for a computer Travelling salesman problem, chess
	 Problems can be easy for common people but difficult for computer (even expressing it in a formal way) Identifying an object, car (say), in a picture
7	• Primary focus will be in the <i>second category</i> problems

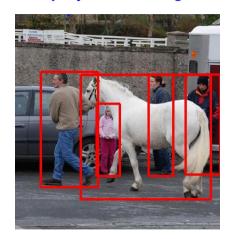
	Problem Solving Strategies for Big Data
	\bullet Need to solve problems efficiently and accurately when the input data is huge (\sim GB, TB order)
	Finding a deterministic algorithm is difficult Need to find out feetures.
	 Need to find out features Requires significant effort for model building
CS551	Need to have domain knowledge
	Statistical inference is found to be suitable
	Feature selection is not crucial
	Model will learn from past data
8	

Applications: Computer vision

- 2d to 3d conversion
- Street view generation
- Image classifications
- Image segmentation

Applications: Activity Recognition

• Recognize activities like walking, running, cooking, etc. from still image or video data


Applications: Image Captioning

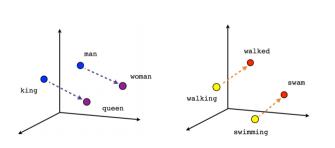
• Automated caption generation for a given image

Applications: Object Identification

• Identify objects in still image or in video stream

Applications: Automated Car

• Self driving car

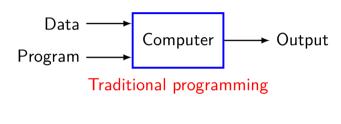

• Managing movement of robot or drones

Applications: Natural Language Processing

- Recommender system
- Sentiment analysis
- Question answering
- Information extraction from website
- Automated email reply



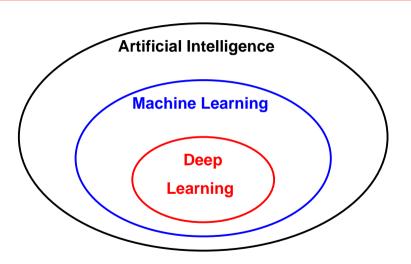
Image source: Internet


Applications: Speech processing

- Conversion of speech into text
- Generation of particular voice for a given text

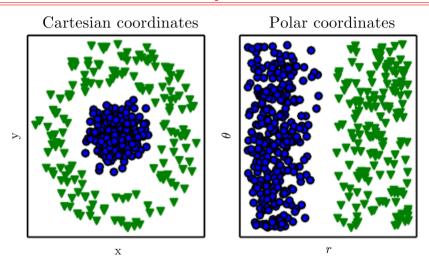
Other possible applications

- Language translation
- Weather prediction
- Genomics
- Drug discovery
- Particle physics
- Surveillance
- Surveillance
- Cryptography
- Generative AI and many more.



Data ← Computer ← Program

Output ← Machine learning


CS551

Al Hierarchy

Structured representation can help in predicting future values

Choice of Representation

- Heavily depends on features
- Requires good domain knowledge
- Feature extraction is **not** easy job
 - Identify a car
 - How to describe wheel
 - Shadow/brightness
 - Obscuring element

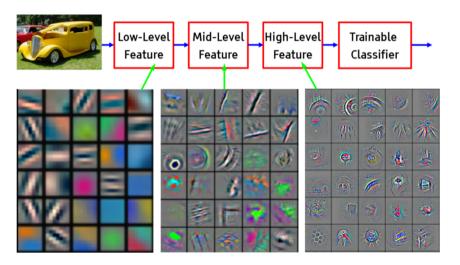

- Learned representation often result in better performance compared to hand design
- Allows the system to rapidly adapt to new task
- Need to discover a good set of features
- Manual design of features is nearly impossible

Design of Features

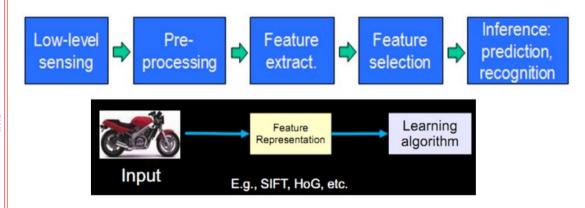
- Goal is to separate out variation factors
- These factors are separate sources of influence
- It may exist as unobserved object or unobserved forces that affect observable quantity
 - Speech Factors are age, sex, accent, etc
 - Image Position, color, brightness, etc.

Deep Learning

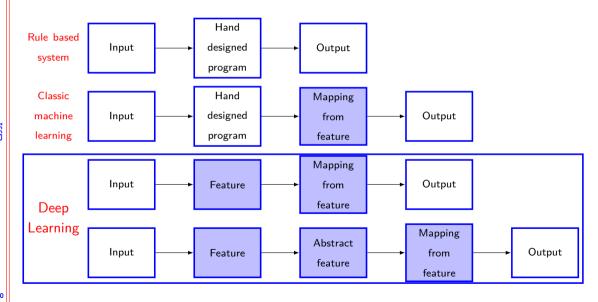
- Try to address the problem of representation learning
- Representation are expressed in terms of other simpler representation
- Develop complex concept using simpler concept


CAR

Output


(object identity)

contours)


Simple to Complex Features

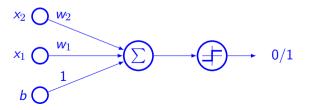
Conventional Machine Learning

- Feed-forward deep network or multilayer perceptron
- Mathematical functions that map input to output
- Composed of simpler functions
- Each layer provides a new representation
- Learning right representation

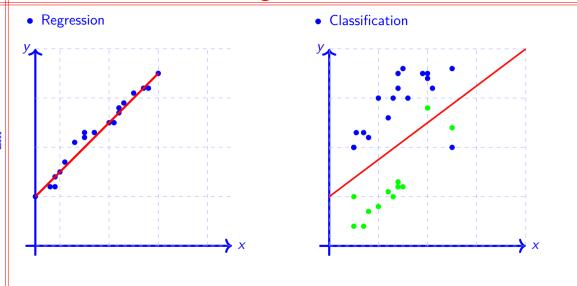
,

History

- Has many names and view point
 - Cybernetics (1940-1960)
 - Connectionism (1980-1990) (neural net)
 - Deep learning (2006+)
- More useful as the amount of data is increased
- Models have grown in size as increase in computing resources
- Solving complex problem with increasing accuracy

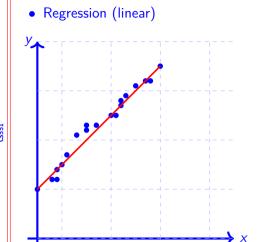

CS551

- Perceptron was linear classifier on top of simple feature extractor
- Most of the practical applications of ML today use glorified linear classifiers or glorified
- t
- template matching.

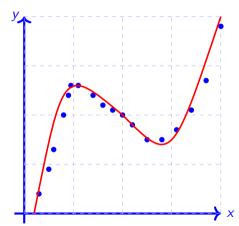

• Built at Cornell, 1960

- Significant effort is required for identifying relevant features
- Typically it will solve $y = sign\left(\sum_{i=1}^{N} (w_i \times f_i(X) + b)\right)$

• The first learning machine: the Perceptron

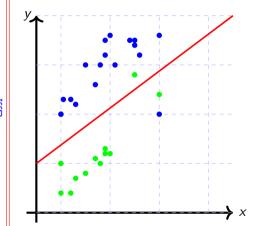


Broad Categories of Problem

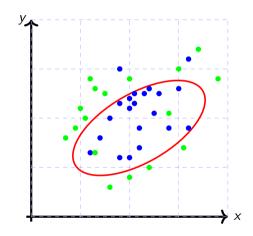


3

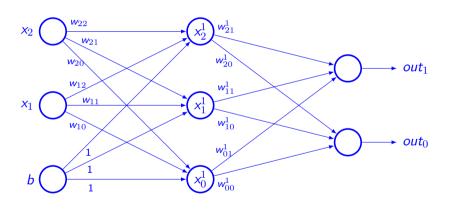
Regression



• Regression (Non-linear)

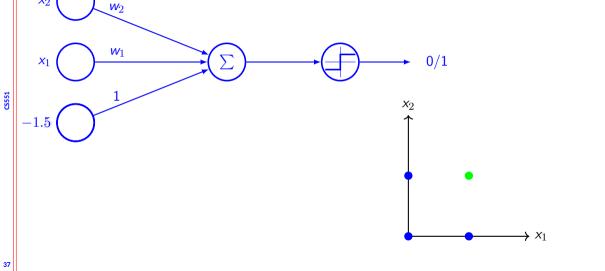


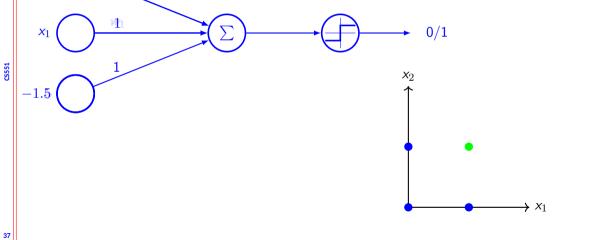
3

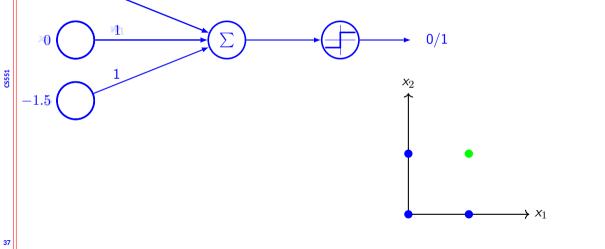


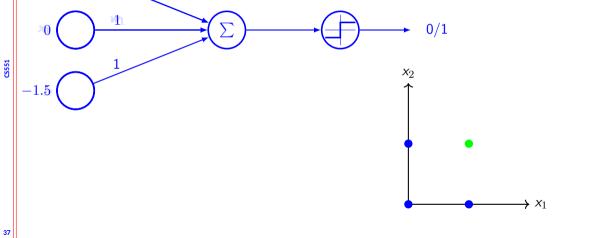
• Non-linear

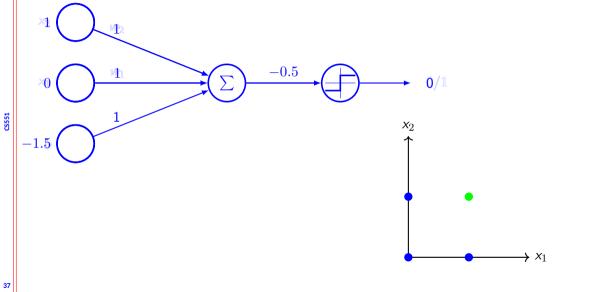
• A simple model

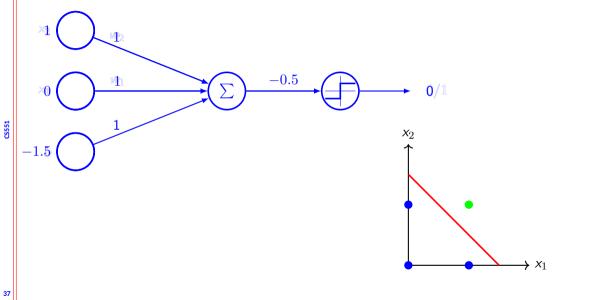


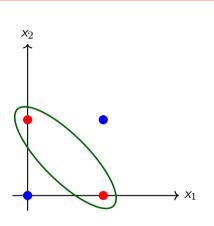

3

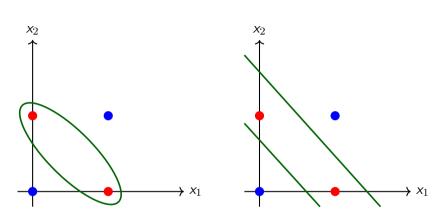

CS551


Example NN: AND gate x₂ w₂







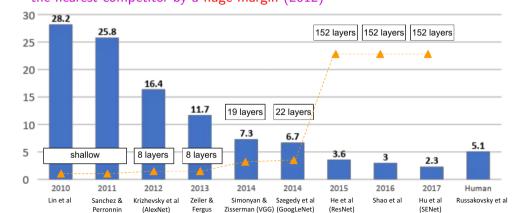


Example NN: XOR gate x_2 $\rightarrow x_1$

Example NN: XOR gate

Example NN: XOR gate

CS551


38

Total 6 neurons

Most of the

- Most of the theory of neural network was developed in the 1980s
- Started gaining popularity around 2012
 - Geoffrey Hinton and Alex Krizhevsky winning the ImageNet competition where they beat the nearest competitor by a huge margin (2012)

Popularization of Neural Network

955

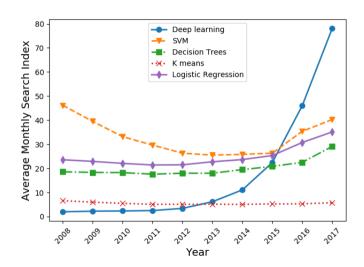
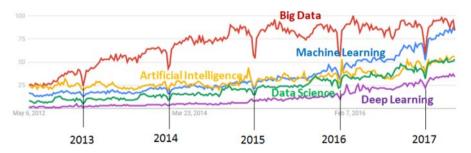

4

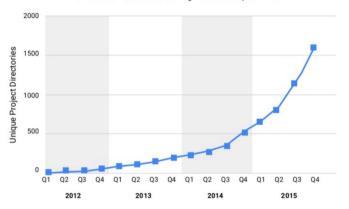
Image source: Jiajun et al. CS230 slides

Popularity

- Increase data size
 - Computing resources are available
 - Accepting performance 5000 labeled example per category
 - 10 million for human performance
 - Increasing model size
- Increasing accuracy, complexity, real world impact
- Used by many companies
 - Google, Microsoft, Facebook, IBM, Baidu, Apple, Adobe, Nvidia, NEC, etc.
- Availability of good commercial & open-source tools
- Theano, Torch, DistBelief, Caffe, TensorFlow, Keras, etc.


DL Trend

Search trend in Google


Google Trends, May 2012 - April 2017, Worldwide

Big Data, Machine Learning, Artificial Intelligence, Data Science, Deep Learning

AI/DL in Google

Number of directories containing model description files

Across many products/areas

- Apps
- Maps
- Photos
- Gmail
- Speech
- Android
- YouTube
- Translation
- Robotics Research
- Image Understanding
- Natural Language Understanding
- Drug Discovery

- Explainability generation of interpretable description

- Concentrating power no idea of effects of large scale adoptation of AI on society
 - Existential risk risk due to technology advancement
- This list is not exhaustive!!

Artificial Intelligence is the New Electricity - Andrew Ng

Artificial Intelligence is the New Electricity - Andrew Ng

Thank you!