
CS5511

CS365: Deep Learning

Neural Networks-II

Arijit Mondal
Dept. of Computer Science & Engineering

Indian Institute of Technology Patna

arijit@iitp.ac.in



CS
55
1

2

Machine Learning
• A form of applied statistics with

• Increased emphasis on the use of computers to statistically estimate complicated function
• Decreased emphasis on proving confidence intervals around these functions

• Two primary approaches
• Frequentist estimators
• Bayesian inference

• A ML/DL algorithm is an algorithm that is able to learn from data
• Mitchelle (1997)

• A computer program is said to learn from experience E with respect to some class of
task T and performance measure P, if its performance at task in T as measured by P,
improves with experience E.



CS
55
1

3

Task
• A ML/DL task is usually described in terms of how the system should process an example

• Example is a collection of features that have been quantitatively measured from some
objects or events that we want the learning system process
• Represented as x ∈ Rn where xi is a feature
• Feature of an image — pixel values



CS
55
1

4

Typical tasks
• Classification

• Need to predict which of the k categories some input belongs to
• Need to have a function f : Rn → {1, 2, . . . , k}
• y = f(x) input x is assigned a category identified by y
• Examples

• Object identification
• Face recognition

• Regression
• Need to predict numeric value for some given input
• Need to have a function f : Rn → R
• Examples

• Energy consumption
• Amount of insurance claim



CS
55
1

5

Typical tasks (contd.)
• Classification with missing inputs

• Need to have a set of functions
• Each function corresponds to classifying x with different subset of inputs missing
• Examples

• Medical diagnosis (expensive or invasive)

• Transcription
• Need to convert relatively unstructured data into discrete, textual form

• Optical character recognition
• Speech recognition

• Machine translation
• Conversion of sequence of symbols in one language to some other language

• Natural language processing (English to Spanish conversion)



CS
55
1

5

Typical tasks (contd.)
• Classification with missing inputs

• Need to have a set of functions
• Each function corresponds to classifying x with different subset of inputs missing
• Examples

• Medical diagnosis (expensive or invasive)
• Transcription

• Need to convert relatively unstructured data into discrete, textual form
• Optical character recognition
• Speech recognition

• Machine translation
• Conversion of sequence of symbols in one language to some other language

• Natural language processing (English to Spanish conversion)



CS
55
1

5

Typical tasks (contd.)
• Classification with missing inputs

• Need to have a set of functions
• Each function corresponds to classifying x with different subset of inputs missing
• Examples

• Medical diagnosis (expensive or invasive)
• Transcription

• Need to convert relatively unstructured data into discrete, textual form
• Optical character recognition
• Speech recognition

• Machine translation
• Conversion of sequence of symbols in one language to some other language

• Natural language processing (English to Spanish conversion)



CS
55
1

6

Typical tasks (contd.)
• Structured output

• Output is a vector with important relationship between the different elements
• Mapping natural language sentence into a tree that describes grammatical structure
• Pixel based image segmentation (eg. identify roads)

• Anomaly detection
• Observes a set of events or objects and flags if some of them are unusual

• Fraud detection in credit card
• Synthesis and sampling

• Generate new example similar to past examples
• Useful for media application
• Text to speech



CS
55
1

6

Typical tasks (contd.)
• Structured output

• Output is a vector with important relationship between the different elements
• Mapping natural language sentence into a tree that describes grammatical structure
• Pixel based image segmentation (eg. identify roads)

• Anomaly detection
• Observes a set of events or objects and flags if some of them are unusual

• Fraud detection in credit card

• Synthesis and sampling
• Generate new example similar to past examples

• Useful for media application
• Text to speech



CS
55
1

6

Typical tasks (contd.)
• Structured output

• Output is a vector with important relationship between the different elements
• Mapping natural language sentence into a tree that describes grammatical structure
• Pixel based image segmentation (eg. identify roads)

• Anomaly detection
• Observes a set of events or objects and flags if some of them are unusual

• Fraud detection in credit card
• Synthesis and sampling

• Generate new example similar to past examples
• Useful for media application
• Text to speech



CS
55
1

7

Performance measure
• Accuracy is one of the key measures

• The proportion of examples for which the model produces correct outputs
• Similar to error rate

• Error rate often referred as expected 0-1 loss
• Mostly interested how DL algorithm performs on unseen data
• Choice of performance measure may not be straight forward

• Transcription
• Accuracy of the system at transcribing entire sequence
• Any partial credit for some elements of the sequence are correct



CS
55
1

8

Experience
• Kind of experience allowed during learning process

• Supervised
• Unsupervised



CS
55
1

9

Supervised learning
• Allowed to use labeled dataset
• Example — Iris

• Collection of measurements of different parts of Iris plant
• Each plant means each example
• Features

• Sepal length/width, petal length/width
• Also record which species the plant belong to



CS
55
1

10

Supervised learning (contd.)
• A set of labeled examples ⟨x1, x2, . . . , xn, y⟩

• xi are input variables
• y output variable

• Need to find a function f : X1 × X2 × . . .Xn → Y
• Goal is to minimize error/loss function

• Like to minimize over all dataset
• We have limited dataset



CS
55
1

11

Unsupervised learning
• Learns useful properties of the structure of data set
• Unlabeled data

• Tries to learn entire probability distribution that generated the dataset
• Examples

• Clustering, dimensionality reduction



CS
55
1

11

Unsupervised learning
• Learns useful properties of the structure of data set
• Unlabeled data

• Tries to learn entire probability distribution that generated the dataset
• Examples

• Clustering, dimensionality reduction



CS
55
1

12

Supervised vs Unsupervised learning
• Unsupervised attempts to learn implicitly or explicitly probability distribution of p(x)
• Supervised tries to predict y from x ie. p(y|x)

• Unsupervised learning can be decomposed as supervised learning

p(x) =
n∏

i=1

p(xi|x1, x2, . . . , xi−1)

• Solving supervised learning using traditional unsupervised learning

p(y|x) = p(x, y)∑
y′ p(x, y′)



CS
55
1

12

Supervised vs Unsupervised learning
• Unsupervised attempts to learn implicitly or explicitly probability distribution of p(x)
• Supervised tries to predict y from x ie. p(y|x)
• Unsupervised learning can be decomposed as supervised learning

p(x) =
n∏

i=1

p(xi|x1, x2, . . . , xi−1)

• Solving supervised learning using traditional unsupervised learning

p(y|x) = p(x, y)∑
y′ p(x, y′)



CS
55
1

12

Supervised vs Unsupervised learning
• Unsupervised attempts to learn implicitly or explicitly probability distribution of p(x)
• Supervised tries to predict y from x ie. p(y|x)
• Unsupervised learning can be decomposed as supervised learning

p(x) =
n∏

i=1

p(xi|x1, x2, . . . , xi−1)

• Solving supervised learning using traditional unsupervised learning

p(y|x) = p(x, y)∑
y′ p(x, y′)



x1 . . . xj . . . xk 1

h1(x) . . . . . . 1

W1 b1

h2(x) . . . . . . 1

W2 b2

f(x)

W3
b3

CS
55
1

13

Multi layer neural network
• Pre-activation in layer

k > 0 (h(0)(x) = x)

a(k)(x) = b(k) + W(k)h(k−1)x

• Hidden layer activation

h(k)(x) = g(a(k)(x))

• Output layer activation

h(L+1)(x) = o(a(L+1)(x)) = f(x)



x1 . . . xj . . . xk 1

h1(x) . . . . . . 1

W1 b1

h2(x) . . . . . . 1

W2 b2

f(x)

W3
b3

CS
55
1

14

Multi layer neural network
• Design issues

• Number of layers
• Number of neurons in each layer
• Activation function
• Output function
• Loss function
• Optimizer



g(x) = x, g(x) = 2x

CS
55
1

15

Activation function
• Linear activation function

• Not very interesting
• No change in values
• Huge range



σ(ax) = 1

1 + exp(−a × x)

a = 1
a = 2

CS
55
1

16

Activation function
• Sigmoid function

• Values lie between 0 and 1
• Strictly increasing function
• Bounded



σ(ax) = 1

1 + exp(−a × x)

a = 1

a = 2

CS
55
1

16

Activation function
• Sigmoid function

• Values lie between 0 and 1
• Strictly increasing function
• Bounded



σ(ax) = 1

1 + exp(−a × x)

a = 1
a = 2

CS
55
1

16

Activation function
• Sigmoid function

• Values lie between 0 and 1
• Strictly increasing function
• Bounded



g(ax) = tanh(ax) = exp(ax)− exp(−ax)
exp(ax) + exp(−ax)

a=1

a=2

CS
55
1

17

Activation function
• Hyperbolic Tangent (Tanh) function

• Can be positive or negative
• Values lie between -1 and 1
• Strictly increasing function
• Bounded



g(ax) = tanh(ax) = exp(ax)− exp(−ax)
exp(ax) + exp(−ax)

a=1
a=2

CS
55
1

17

Activation function
• Hyperbolic Tangent (Tanh) function

• Can be positive or negative
• Values lie between -1 and 1
• Strictly increasing function
• Bounded



g(x) = reclin(x) = max(0, x)

CS
55
1

18

Activation function
• Rectified linear activation function (ReLU)

• Bounded below by 0
• Strictly increasing function
• Not upper bounded



CS
55
1

19

Generalization of ReLU
• ReLU is defined as g(z) = max{0, z}
• Using non-zero slope, hi = g(z,α)i = max(0, zi) + αi min(0, zi)

• Absolute value rectification will make αi = −1 and g(z) = |z|
• Leaky ReLU assumes very small values for αi

• Parametric ReLU tries to learn αi parameters
• Maxout unit g(z)i = max

j∈G(i)
zj

• Suitable for learning piecewise linear function



CS
55
1

20

Logistic sigmoid & hyperbolic tangent
• Logistic sigmoid g(z) = σ(z)
• Hyperbolic tangent g(z) = tanh(z)

• tanh(z) = 2σ(2z)− 1

• Widespread saturation of sigmoidal unit is an issue for gradient based learning
• Usually discouraged to use as hidden units

• Usually, hyperbolic tangent function performs better where sigmoidal function must be
used
• Behaves linearly at 0
• Sigmoidal activation function are more common in settings other than feedforward net-

work



CS
55
1

21

Other activation functions
• Differentiable functions are usually preferred
• Activation function h = cos(Wx + b) performs well for MNIST data set
• Sometimes no activation function helps in reducing the number of parameters
• Radial Basis Function - ϕ(x, c) = ϕ(∥x − c∥)

• Gaussian - exp(−(εr)2)
• Softplus - g(x) = ζ(x) = log(1 + exp(x))
• Hard tanh - g(x) = max(−1,min(1, x))
• Hidden unit design is an active area of research



CS
55
1

22

Hidden units
• Active area of research and does not have good guiding theoretical principle
• Usually rectified linear unit (ReLU) is chosen in most of the cases
• Design process consists of trial and error, then the suitable one is chosen
• Some of the activation functions are not differentiable (eg. ReLU)

• Still gradient descent performs well
• Neural network does not converge to local minima but reduces the value of cost function

to a very small value



CS
55
1

23

Output units
• Choice of output function usually depends on the type of problem being solved
• Usually linear function is chosen for regression and sigmoid for classification problems
• Any kind of output unit can be used as hidden unit



CS
55
1

24

Linear units
• Suited for Gaussian output distribution
• Given features h, linear output unit produces ŷ = WTh + b
• This can be treated as conditional probability p(y|x) = N (y; ŷ, I)
• Maximizing log-likelihood is equivalent to minimizing mean square error



CS
55
1

25

Sigmoid unit
• Mostly suited for binary classification problem that is Bernoulli output distribution
• The neural networks need to predict p(y = 1|x)

• If linear unit has been chosen, p(y = 1|x) = max
{
0,min{1,WTh + b}

}
• Gradient?

• Model should have strong gradient whenever the answer is wrong
• Let us assume unnormalized log probability is linear with z = WTh + b
• Therefore, log P̃(y) = yz ⇒ P̃(y) = exp(yz) ⇒ P(y) = exp(yz)∑

y′∈{0,1} exp(y′z)

• It can be written as P(y) = σ((2y − 1)z)
• The loss function for maximum likelihood is

J(θ) = − log P(y|x) = − logσ((2y − 1)z) = ζ((1− 2y)z)



CS
55
1

26

Softmax unit
• Similar to sigmoid. Mostly suited for multinoulli distribution
• We need to predict a vector ŷ such that ŷi = P(Y = i|x)
• A linear layer predicts unnormalized probabilities z = WTh + b that is zi = log P̃(y = i|x)
• Formally, softmax(z)i =

exp zi∑
j exp(zj)

• Log in log-likelihood can undo exp log softmax(z)i = zi − log
∑

j
exp(zj)

• Does it saturate?
• What about incorrect prediction?

• Invariant to addition of some scalar to all input variables ie.
softmax(z) = softmax(z + c)



CS
55
1

27

Loss function
• Need to compare ŷ = f(x) with the true label y for an input x
• For a single input example loss will be measured as L(y, f(x))

• Average loss over a set of examples will be 1

m

m∑
i=1

L(yi, ŷi)

• Target is to minimize the loss function
• Given the weights of the network W, the forward propagation yields ŷi = f(x,W)

• Our goal is as follows: minimize
W

1

m

m∑
i=1

L(yi, f(xi,W))

• Generic loss function can have the following form | y − a |p

• Euclidean norm p = 2



| y − a |0.3, y=0

| y − a |1.0, y=0
| y − a |2.0, y=0
| y − a |4.0, y=0

CS
55
1

28

Loss curve



| y − a |0.3, y=0
| y − a |1.0, y=0

| y − a |2.0, y=0
| y − a |4.0, y=0

CS
55
1

28

Loss curve



| y − a |0.3, y=0
| y − a |1.0, y=0
| y − a |2.0, y=0

| y − a |4.0, y=0

CS
55
1

28

Loss curve



| y − a |0.3, y=0
| y − a |1.0, y=0
| y − a |2.0, y=0
| y − a |4.0, y=0

CS
55
1

28

Loss curve



CS
55
1

29

Linear regression
• Prediction of the value of a continuous variable

• Example — price of a house, solar power generation in photo-voltaic cell, etc.

• Takes a vector x ∈ Rn and predict scalar y ∈ R
• Predicted value will be represented as ŷ = wTx where w is a vector of parameters

• xi receives positive weight — Increasing the value of the feature will increase the value of y
• xi receives negative weight — Increasing the value of the feature will decrease the value of y
• Weight value is very high/large — Large effect on prediction



CS
55
1

29

Linear regression
• Prediction of the value of a continuous variable

• Example — price of a house, solar power generation in photo-voltaic cell, etc.
• Takes a vector x ∈ Rn and predict scalar y ∈ R

• Predicted value will be represented as ŷ = wTx where w is a vector of parameters
• xi receives positive weight — Increasing the value of the feature will increase the value of y
• xi receives negative weight — Increasing the value of the feature will decrease the value of y
• Weight value is very high/large — Large effect on prediction



∑
1

b1

w
x

y
L = 1

2(y − wx − b)2

CS
55
1

30

Linear regression using neural network



CS
55
1

31

Performance
• Assume, we have m examples not used for training

• This is known as test set

• Design matrix of inputs is X(test) and target output is a vector y(test)

• Performance is measured by Mean Square Error (MSE)

MSE(test) =
1

m
∑

i

(
ŷ(test) − y(test)

)2

i
=

1

m∥ŷ(test) − y(test)∥22

• Error increases when the Euclidean distance between target and prediction increases
• The learning algorithm is allowed to gain experience from training set (X(train), y(train))

• One of the common ideas is to minimize MSE(train) for training set



CS
55
1

31

Performance
• Assume, we have m examples not used for training

• This is known as test set
• Design matrix of inputs is X(test) and target output is a vector y(test)

• Performance is measured by Mean Square Error (MSE)

MSE(test) =
1

m
∑

i

(
ŷ(test) − y(test)

)2

i
=

1

m∥ŷ(test) − y(test)∥22

• Error increases when the Euclidean distance between target and prediction increases

• The learning algorithm is allowed to gain experience from training set (X(train), y(train))

• One of the common ideas is to minimize MSE(train) for training set



CS
55
1

31

Performance
• Assume, we have m examples not used for training

• This is known as test set
• Design matrix of inputs is X(test) and target output is a vector y(test)

• Performance is measured by Mean Square Error (MSE)

MSE(test) =
1

m
∑

i

(
ŷ(test) − y(test)

)2

i
=

1

m∥ŷ(test) − y(test)∥22

• Error increases when the Euclidean distance between target and prediction increases
• The learning algorithm is allowed to gain experience from training set (X(train), y(train))

• One of the common ideas is to minimize MSE(train) for training set



CS
55
1

32

Minimization of MSE
• We have the following now

∇wMSE(train) = 0

⇒ ∇w
1
m∥ŷ(train) − y(train)∥22 = 0

⇒ 1
m∇w∥X(train)w − y(train)∥22 = 0

⇒ ∇w(X(train)w − y(train))T(X(train)w − y(train)) = 0

⇒ ∇w(wTX(train)TX(train)w − 2wTX(train)Ty(train) + y(train)Ty(train)) = 0

⇒ 2X(train)TX(train)w − 2X(train)Ty(train) = 0

⇒ w = (X(train)TX(train))−1X(train)Ty(train)

• Linear regression with bias term ŷ = [wT w0][x 1]T



CS
55
1

32

Minimization of MSE
• We have the following now

∇wMSE(train) = 0

⇒ ∇w
1
m∥ŷ(train) − y(train)∥22 = 0

⇒ 1
m∇w∥X(train)w − y(train)∥22 = 0

⇒ ∇w(X(train)w − y(train))T(X(train)w − y(train)) = 0

⇒ ∇w(wTX(train)TX(train)w − 2wTX(train)Ty(train) + y(train)Ty(train)) = 0

⇒ 2X(train)TX(train)w − 2X(train)Ty(train) = 0

⇒ w = (X(train)TX(train))−1X(train)Ty(train)

• Linear regression with bias term ŷ = [wT w0][x 1]T



CS
55
1

32

Minimization of MSE
• We have the following now

∇wMSE(train) = 0

⇒ ∇w
1
m∥ŷ(train) − y(train)∥22 = 0

⇒ 1
m∇w∥X(train)w − y(train)∥22 = 0

⇒ ∇w(X(train)w − y(train))T(X(train)w − y(train)) = 0

⇒ ∇w(wTX(train)TX(train)w − 2wTX(train)Ty(train) + y(train)Ty(train)) = 0

⇒ 2X(train)TX(train)w − 2X(train)Ty(train) = 0

⇒ w = (X(train)TX(train))−1X(train)Ty(train)

• Linear regression with bias term ŷ = [wT w0][x 1]T



CS
55
1

32

Minimization of MSE
• We have the following now

∇wMSE(train) = 0

⇒ ∇w
1
m∥ŷ(train) − y(train)∥22 = 0

⇒ 1
m∇w∥X(train)w − y(train)∥22 = 0

⇒ ∇w(X(train)w − y(train))T(X(train)w − y(train)) = 0

⇒ ∇w(wTX(train)TX(train)w − 2wTX(train)Ty(train) + y(train)Ty(train)) = 0

⇒ 2X(train)TX(train)w − 2X(train)Ty(train) = 0

⇒ w = (X(train)TX(train))−1X(train)Ty(train)

• Linear regression with bias term ŷ = [wT w0][x 1]T



CS
55
1

32

Minimization of MSE
• We have the following now

∇wMSE(train) = 0

⇒ ∇w
1
m∥ŷ(train) − y(train)∥22 = 0

⇒ 1
m∇w∥X(train)w − y(train)∥22 = 0

⇒ ∇w(X(train)w − y(train))T(X(train)w − y(train)) = 0

⇒ ∇w(wTX(train)TX(train)w − 2wTX(train)Ty(train) + y(train)Ty(train)) = 0

⇒ 2X(train)TX(train)w − 2X(train)Ty(train) = 0

⇒ w = (X(train)TX(train))−1X(train)Ty(train)

• Linear regression with bias term ŷ = [wT w0][x 1]T



CS
55
1

32

Minimization of MSE
• We have the following now

∇wMSE(train) = 0

⇒ ∇w
1
m∥ŷ(train) − y(train)∥22 = 0

⇒ 1
m∇w∥X(train)w − y(train)∥22 = 0

⇒ ∇w(X(train)w − y(train))T(X(train)w − y(train)) = 0

⇒ ∇w(wTX(train)TX(train)w − 2wTX(train)Ty(train) + y(train)Ty(train)) = 0

⇒ 2X(train)TX(train)w − 2X(train)Ty(train) = 0

⇒ w = (X(train)TX(train))−1X(train)Ty(train)

• Linear regression with bias term ŷ = [wT w0][x 1]T



CS
55
1

32

Minimization of MSE
• We have the following now

∇wMSE(train) = 0

⇒ ∇w
1
m∥ŷ(train) − y(train)∥22 = 0

⇒ 1
m∇w∥X(train)w − y(train)∥22 = 0

⇒ ∇w(X(train)w − y(train))T(X(train)w − y(train)) = 0

⇒ ∇w(wTX(train)TX(train)w − 2wTX(train)Ty(train) + y(train)Ty(train)) = 0

⇒ 2X(train)TX(train)w − 2X(train)Ty(train) = 0

⇒ w = (X(train)TX(train))−1X(train)Ty(train)

• Linear regression with bias term ŷ = [wT w0][x 1]T



CS
55
1

32

Minimization of MSE
• We have the following now

∇wMSE(train) = 0

⇒ ∇w
1
m∥ŷ(train) − y(train)∥22 = 0

⇒ 1
m∇w∥X(train)w − y(train)∥22 = 0

⇒ ∇w(X(train)w − y(train))T(X(train)w − y(train)) = 0

⇒ ∇w(wTX(train)TX(train)w − 2wTX(train)Ty(train) + y(train)Ty(train)) = 0

⇒ 2X(train)TX(train)w − 2X(train)Ty(train) = 0

⇒ w = (X(train)TX(train))−1X(train)Ty(train)

• Linear regression with bias term ŷ = [wT w0][x 1]T



CS
55
1

33

Moore-Penrose Pseudoinverse
• Let A ∈ Rn×m

• Every A has pseudoinverse A+ ∈ Rm×n and it is unique
• AA+A = A
• A+AA+ = A+

• (AA+)T = AA+

• (A+A)T = A+A
• A+ = limα→0(ATA + αI)−1AT

• Example
• If A = [1 2]T then A+ = [15

2
5 ]

• If A =

 1 2

2 1

1 5

 then A+ =

[
0.121212 0.515152 −0.151515

0.030303 −0.121212 0.212121

]



wx

b

y

CS
55
1

34

Regression example

 0

 10

 20

 30

 40

 50

 60

 70

 0  2  4  6  8  10  12  14

Y

X



wx

b

y

CS
55
1

35

Regression example

 0

 10

 20

 30

 40

 50

 60

 70

 0  2  4  6  8  10  12  14

Y

X



CS
55
1

36

Example

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  2  4  6  8  10  12  14



CS
55
1

37

Example: Variation of MSE wrt w

 24

 26

 28

 30

 32

 34

 36

 38

 40

 42

 44

 0  5  10  15  20  25

M
S

E

w



CS
55
1

38

Example: Best fit

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  2  4  6  8  10  12  14

M
S

E

w



CS
55
1

39

Error
• Training error - Error obtained on a training set
• Generalization error - Error on unseen data
• Data assumed to be independent and identically distributed (iid)

• Each data set are independent of each other
• Train and test data are identically distributed

• Expected training and test error will be the same
• It is more likely that the test error is greater than or equal to the expected value of training

error
• Target is to make the training error is small. Also, to make the gap between training and

test error smaller



Training
Test

CS
55
1

40

Regression example

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  2  4  6  8  10  12  14



Training
Test

CS
55
1

41

Regression example: degree 1

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  2  4  6  8  10  12  14



Training
Test

CS
55
1

42

Regression example: degree 2

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  2  4  6  8  10  12  14



Training
Test

CS
55
1

43

Regression example: degree 3

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  2  4  6  8  10  12  14



Training
Test

CS
55
1

44

Regression example: degree 4

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  2  4  6  8  10  12  14



Training
Test

CS
55
1

45

Regression example: degree 5

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  2  4  6  8  10  12  14



Training
Test

CS
55
1

46

Regression example: degree 6

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  2  4  6  8  10  12  14



CS
55
1

47

Underfitting & Overfitting
• Underfitting

• When the model is not able to obtain sufficiently low error value on the training set
• Overfitting

• When the gap between training set and test set error is too large



Training
Test

CS
55
1

48

Underfitting example

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  2  4  6  8  10  12  14



Training
Test

CS
55
1

49

Overfitting example

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  2  4  6  8  10  12  14



Training
Test

CS
55
1

50

Better fit

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  2  4  6  8  10  12  14



CS
55
1

51

Capacity
• Ability to fit wide variety of functions

• Low capacity will struggle to fit the training set
• High capacity will can overfit by memorizing the training set

• Capacity can be controlled by choosing hypothesis space
• A polynomial of degree 1 gives linear regression ŷ = b + wx
• By adding x2 term, it can learn quadratic curve ŷ = b + w1x + w2x2

• Output is still a linear function of parameters
• Capacity is determined by the choice of model (Representational capacity)
• Finding best function is very difficult optimization problem

• Learning algorithm does not find the best function but reduces the training error
• Imperfection in optimization algorithm can further reduce the capacity of model (effective

capacity)



CS
55
1

52

Capacity (contd.)
• Occam’s razor

• Among equally well hypotheses, choose the simplest one
• Vapnik-Chervonenski dimension - Capacity for binary classifier

• Largest possible value of m for which a training set of m different x points that the
classifier can label arbitrarily

• Training and test error is bounded from above by a quantity that grows as model capacity
grows but shrinks as the number of training example increases
• Bounds are usually provided for ML algorithm and rarely provided for DL
• Capacity of deep learning model is difficult as the effective capacity is limited by opti-

mization algorithm
• Little knowledge on non-convex optimization



Image source: Deep Learning Book

CS
55
1

53

Error vs Capacity



CS
55
1

54

Non-parametric model
• Parametric model learns a function described by a parameter vector

• Size of vector is finite and fixed
• Nearest neighbor regression

• Finds out the nearest entry in training set and returns the associated value as the predicted
one

• Mathematically, for a given point x, ŷ = yi where i = arg min ∥Xi,: − x∥22
• Wrapping parametric algorithm inside another algorithm



CS
55
1

55

Bayes error
• Ideal model is an oracle that knows the true probability distribution for data generation
• Such model can make error because of noise

• Supervised learning
• Mapping of x to y may be stochastic
• y may be deterministic but x does not have all variables

• Error by an oracle in predicting from the true distribution is known as Bayes error



CS
55
1

56

Note
• Training and generalization error varies as the size of training set varies
• Expected generalization error can never increase as the number of training example increases
• Any fixed parametric model with less than the optimal capacity will asymptote to an error

value that exceeds the Bayes error
• It is possible to have optimal capacity but have large gap between training and generalization

error
• Need more training examples



CS
55
1

57

No free lunch
• Averaged over all possible data generating distribution, every classification algorithm has

same error rate when classifying unseen points
• No machine learning algorithm is universally any better than any other


