
CS5511

CS551: Introduction to Deep Learning

Regularization

Arijit Mondal
Dept. of Computer Science & Engineering

Indian Institute of Technology Patna

arijit@iitp.ac.in

CS
55
1

2

Introduction
• In machine learning, target is to make an algorithm performs well not only on training data

but also on new data
• Many strategies exist to reduce test error at the cost of training error
• Any modification we make to a learning algorithm that is intended to reduce its generalization

error but not its training error
• Objectives

• To encode prior knowledge
• Constraints and penalties are designed to express generic preference for simpler model

CS
55
1

3

Regularization in DL
• In DL regularization works by trading increased bias for reduced variance
• Consider the following scenario

• Excluded the true data generating process
• Underfitting, inducing bias

• Matched the true data generating process
• Desired one

• Included the generating process but also many other generating process
• Overfitting, variance dominates

• Goal of regularizer is to take an model overfit zone to desired zone

Image source: Deep Learning Book

CS
55
1

4

Trade off Bias and Variance

CS
55
1

5

Norm penalties
• Most of the regularization approaches are based on limiting the capacity of the model
• Objective function becomes J̃(θ;X, y) = J(θ;X, y) + αΩ(θ)

• α — Hyperparameter denotes relative contribution
• Minimization of J̃ implies minimization of J
• Ω penalizes only the weight of affine transform

• Bias remain unregularized
• Regularizing bias may lead to underfitting

CS
55
1

6

Example: Weight decay

 0

 50

 100

 150

 200

 0 2 4 6 8 10 12 14

L=0
L=100

L=1000

CS
55
1

7

L2 parameter regularization
• Weights are closer to origin as Ω(θ) = 1

2∥w∥22
• Also known as ridge regression or Tikhonov regression

• Objective function J̃(w;X, y) = α

2
wTw + J(w;X, y)

• Gradient ∇wJ̃(w;X, y) = αw +∇wJ(w;X, y)
• New weights

w = w − ϵ(αw +∇wJ(w;X, y)) = w(1− ϵα)− ϵ∇wJ(w;X, y)
• Assuming quadratic nature of curve in the neighborhood of

w∗ = arg min
w

J(w)
• J(w) — unregularized cost
• Perfect scenario for linear regression with MSE

CS
55
1

7

L2 parameter regularization
• Weights are closer to origin as Ω(θ) = 1

2∥w∥22
• Also known as ridge regression or Tikhonov regression

• Objective function J̃(w;X, y) = α

2
wTw + J(w;X, y)

• Gradient ∇wJ̃(w;X, y) = αw +∇wJ(w;X, y)

• New weights
w = w − ϵ(αw +∇wJ(w;X, y)) = w(1− ϵα)− ϵ∇wJ(w;X, y)

• Assuming quadratic nature of curve in the neighborhood of
w∗ = arg min

w
J(w)

• J(w) — unregularized cost
• Perfect scenario for linear regression with MSE

CS
55
1

7

L2 parameter regularization
• Weights are closer to origin as Ω(θ) = 1

2∥w∥22
• Also known as ridge regression or Tikhonov regression

• Objective function J̃(w;X, y) = α

2
wTw + J(w;X, y)

• Gradient ∇wJ̃(w;X, y) = αw +∇wJ(w;X, y)
• New weights

w = w − ϵ(αw +∇wJ(w;X, y))

= w(1− ϵα)− ϵ∇wJ(w;X, y)
• Assuming quadratic nature of curve in the neighborhood of

w∗ = arg min
w

J(w)
• J(w) — unregularized cost
• Perfect scenario for linear regression with MSE

CS
55
1

7

L2 parameter regularization
• Weights are closer to origin as Ω(θ) = 1

2∥w∥22
• Also known as ridge regression or Tikhonov regression

• Objective function J̃(w;X, y) = α

2
wTw + J(w;X, y)

• Gradient ∇wJ̃(w;X, y) = αw +∇wJ(w;X, y)
• New weights

w = w − ϵ(αw +∇wJ(w;X, y)) = w(1− ϵα)− ϵ∇wJ(w;X, y)

• Assuming quadratic nature of curve in the neighborhood of
w∗ = arg min

w
J(w)

• J(w) — unregularized cost
• Perfect scenario for linear regression with MSE

CS
55
1

7

L2 parameter regularization
• Weights are closer to origin as Ω(θ) = 1

2∥w∥22
• Also known as ridge regression or Tikhonov regression

• Objective function J̃(w;X, y) = α

2
wTw + J(w;X, y)

• Gradient ∇wJ̃(w;X, y) = αw +∇wJ(w;X, y)
• New weights

w = w − ϵ(αw +∇wJ(w;X, y)) = w(1− ϵα)− ϵ∇wJ(w;X, y)
• Assuming quadratic nature of curve in the neighborhood of

w∗ = arg min
w

J(w)
• J(w) — unregularized cost
• Perfect scenario for linear regression with MSE

CS
55
1

8

Jacobian & Hessian
• Derivative of a function having single input and single output — dy

dx
• Derivative of function having vector input and vector output that is, f : Rm → Rn

• Jacobian J ∈ Rn×m of f defined as Ji,j =
∂
∂xj

f(x)i

• Second derivative is also required sometime

• For example, f : Rn → R, ∂2

∂xi∂xj
f

• If second derivative is 0, then there is no curvature

• Hessian matrix H(f)(x)ij =
∂2

∂xi∂xj
f(x)

• Jacobian of gradient
• Symmetric

CS
55
1

8

Jacobian & Hessian
• Derivative of a function having single input and single output — dy

dx
• Derivative of function having vector input and vector output that is, f : Rm → Rn

• Jacobian J ∈ Rn×m of f defined as Ji,j =
∂
∂xj

f(x)i

• Second derivative is also required sometime

• For example, f : Rn → R, ∂2

∂xi∂xj
f

• If second derivative is 0, then there is no curvature

• Hessian matrix H(f)(x)ij =
∂2

∂xi∂xj
f(x)

• Jacobian of gradient
• Symmetric

CS
55
1

9

Directional derivative
• The directional derivative of a scalar function f(x) = f(x1, x2, . . . , xn) along a vector v =

(v1, . . . , vn) is given by
∇vf(x) = lim

h→0

f(x + hv)− f(x)
h

• If f is differentiable at point x then

∇vf(x) = ∇f(x) · v

CS
55
1

10

Taylor series expansion
• A real valued function differentiable at point x0 can be expressed as

f(x) = f(x0) +
f ′(x0)
1!

(x − x0) +
f ′′(x0)
2!

(x − x0)2 +
f(3)(x0)

3!
(x − x0)3 + · · · .

• When input is a vector

f(x) ≈ f(x(0)) + (x − x(0))Tg +
1

2
(x − x(0))TH(x − x(0))

• g — gradient at x(0), H — Hessian at x(0)

• If ϵ is the learning rate, then f(x(0) − ϵg) = f(x(0))− ϵgTg +
1

2
ϵ2gTHg

CS
55
1

10

Taylor series expansion
• A real valued function differentiable at point x0 can be expressed as

f(x) = f(x0) +
f ′(x0)
1!

(x − x0) +
f ′′(x0)
2!

(x − x0)2 +
f(3)(x0)

3!
(x − x0)3 + · · · .

• When input is a vector

f(x) ≈ f(x(0)) + (x − x(0))Tg +
1

2
(x − x(0))TH(x − x(0))

• g — gradient at x(0), H — Hessian at x(0)

• If ϵ is the learning rate, then f(x(0) − ϵg) = f(x(0))− ϵgTg +
1

2
ϵ2gTHg

CS
55
1

10

Taylor series expansion
• A real valued function differentiable at point x0 can be expressed as

f(x) = f(x0) +
f ′(x0)
1!

(x − x0) +
f ′′(x0)
2!

(x − x0)2 +
f(3)(x0)

3!
(x − x0)3 + · · · .

• When input is a vector

f(x) ≈ f(x(0)) + (x − x(0))Tg +
1

2
(x − x(0))TH(x − x(0))

• g — gradient at x(0), H — Hessian at x(0)

• If ϵ is the learning rate, then f(x(0) − ϵg) = f(x(0))− ϵgTg +
1

2
ϵ2gTHg

CS
55
1

11

Quadratic approximation
• Let w∗ = arg minw J(w) be optimum weights for minimal unregularized cost
• If the objective function is quadratic then

Ĵ(θ) = J(w∗) +
1

2
(w − w∗)TH(w − w∗)

• H is the Hessian matrix of J with respect to w at w∗

• No first order term as w∗ is minimum
• H is positive semidefinite

• Minimum of Ĵ occurs when ∇wĴ(w) = H(w − w∗) = 0

• With weight decay we have
αw̃ + H(w̃ − w∗) = 0 ⇒ (H + αI)w̃ = Hw∗ ⇒ w̃ = (H + αI)−1Hw∗

CS
55
1

12

Quadratic approximation (contd)
• As α → 0, regularized solution w̃ approaches to w∗

• As α ̸= 0

• H is symmetric, therefore H = QΛQT. Now we have

w̃ = (QΛQT + αI)−1QΛQTw∗

=
[
Q(Λ+ αI)QT]−1 QΛQTw∗

= Q(Λ+ αI)−1ΛQTw∗

• Weight decay rescale w∗ along the eigen vector of H
• Component of w∗ that is aligned to i-th eigen vector, will be rescaled by a factor of λi

λi+α

• λi ≫ α — regularization effect is small

w1

w2

w∗

w̃

CS
55
1

13

L2 Norm: Geometrical interpretation

CS
55
1

14

Linear regression
• For linear regression cost function is (Xw − y)T(Xw − y)
• Using L2 regularization we have (Xw − y)T(Xw − y) + 1

2αwTw

• Solution for normal equation w = (XTX)−1XTy
• Solution for with weight decay w = (XTX + αI)−1XTy

CS
55
1

14

Linear regression
• For linear regression cost function is (Xw − y)T(Xw − y)
• Using L2 regularization we have (Xw − y)T(Xw − y) + 1

2αwTw
• Solution for normal equation w = (XTX)−1XTy

• Solution for with weight decay w = (XTX + αI)−1XTy

CS
55
1

14

Linear regression
• For linear regression cost function is (Xw − y)T(Xw − y)
• Using L2 regularization we have (Xw − y)T(Xw − y) + 1

2αwTw
• Solution for normal equation w = (XTX)−1XTy
• Solution for with weight decay w = (XTX + αI)−1XTy

CS
55
1

15

L1 regularization
• Formally it is defined as Ω(θ) = ∥w∥1 =

∑
i
|wi|

• Regularized objective function will be J̃(w;X, y) = α∥w∥1 + J(w;X, y)

• The gradient will be ∇wJ̃(w;X, y) = αsign(w) +∇wJ(w;X, y)
• Gradient does not scale linearly compared to L2 regularization

• Taylor series expansion with approximation provides ∇wĴ(w) = H(w − w∗)

• Simplification can be made by assuming H to be diagonal
• Apply PCA on the input dataset

CS
55
1

15

L1 regularization
• Formally it is defined as Ω(θ) = ∥w∥1 =

∑
i
|wi|

• Regularized objective function will be J̃(w;X, y) = α∥w∥1 + J(w;X, y)
• The gradient will be ∇wJ̃(w;X, y) = αsign(w) +∇wJ(w;X, y)

• Gradient does not scale linearly compared to L2 regularization
• Taylor series expansion with approximation provides ∇wĴ(w) = H(w − w∗)

• Simplification can be made by assuming H to be diagonal
• Apply PCA on the input dataset

CS
55
1

16

L1 regularization
• Quadratic approximation of L1 regularization objective function becomes Ĵ(w;X, y) =

J((w∗;X, y) +
∑

i
[
1
2Hi,i(wi − w∗

i)
2 + α|wi|

]
• So, analytical solution in each dimension will be wi = sign(w∗

i)max
{
|w∗

i | − α
Hi,i

, 0
}

• Consider the situation when w∗
i > 0

• If w∗
i ≤ α

Hi,i
, optimal value for wi will be 0 under regularization

• If w∗
i > α

Hi,i
, wi moves towards 0 with a distance equal to α

Hi,i

CS
55
1

17

Constrained optimization
• Cost function regularized by norm penalty is given by

J̃(θ;X, y) = J(θ;X, y) + αΩ(θ)

• Let us assume f(x) needs to be optimized under a set of equality constraints g(i)(x) = 0 and
inequality constraints h(j)(x) ≤ 0, then generalized Lagrangian is then defined as

L(x,λ,α) = f(x) +
∑

i
λig(i)(x) +

∑
j
αjh(j)(x)

• If there exists a solution then
min

x
max
λ

max
α≥0

L(x,λ,α) = min
x

f(x)

• This can be solved by ∇x,λ,αL(x,λ,α) = 0

CS
55
1

18

Constraint optimization (contd.)
• Suppose Ω(θ) < k needs to be satisfied. Then regularization equation becomes

L(θ, α;X, y) = J(θ;X, y) + α(Ω(θ)− k)

• Solution to the constrained problem

θ∗ = arg min
θ

max
α>0

L(θ, α)

CS
55
1

19

Dataset augmentation
• If data are limited, fake data can be added to training set

• Computer vision problem
• Speech recognition

• Easiest for classification problem
• Very effective in object recognition problem

• Translating
• Rotating
• Scaling

• Need to be careful for ’b’ and ’d’ or ’6’ and ’9’
• Injecting noise to input data can be viewed as data augmentation

Image source: Deep Learning Book

CS
55
1

20

Multitask learning

Image source: Deep Learning Book

CS
55
1

21

Early stopping

CS
55
1

22

Early stopping approach
• Initialize the parameters
• Run training algorithm for n steps and update i = i + n
• Compute error on the validation set (v ′)
• If v ′ is less than previous best, then update the same. Start step 2 again
• If v ′ is more than the previous best, then increment the count that stores the number of such

occurrences. If the count is less than a threshold go to step 2, otherwise exit.

CS
55
1

23

Early stopping (contd)
• Number of training step is a hyperparameter

• Most hyperparameters that control model capacity have U-shaped curve
• Additional cost for this approach is to store the parameters
• Requires a validation set

• It will have two passes
• First pass uses only training data for update of the parameters
• Second pass uses both training and validation data for update of the parameters

• Possible strategies
• Initialize the model again, retrain on all data, train for the same number of steps as obtained by

early stopping in pass 1
• Keep the parameters obtained from the first round, continue training using all data until the loss

is less than the training loss at the early stopping point
• It reduces computational cost as it limits the number of iteration
• Provides regularization without any penalty

CS
55
1

24

Early stopping as regularizer
• Let us assume τ training iteration, ϵ learning rate

• ϵτ — measures effective capacity
• We have, Ĵ(θ) = J(w∗) + 1

2(w − w∗)H(w − w∗) and ∇wĴ(w) = H(w − w∗)

• Assume w(0) = 0

• Approximate behavior of gradient descent provides

w(τ) = w(τ−1) − ϵ∇wĴ(w(τ−1))

w(τ) = w(τ−1) − ϵH(w(τ−1) − w∗)

w(τ) − w∗ = (I − ϵH)(w(τ−1) − w∗)

w(τ) − w∗ = (I − ϵQΛQT)(w(τ−1) − w∗)

QT(w(τ) − w∗) = (I − ϵΛ)QT(w(τ−1) − w∗)

QTw(τ) = [I − (I − ϵΛ)τ]QTw∗

CS
55
1

24

Early stopping as regularizer
• Let us assume τ training iteration, ϵ learning rate

• ϵτ — measures effective capacity
• We have, Ĵ(θ) = J(w∗) + 1

2(w − w∗)H(w − w∗) and ∇wĴ(w) = H(w − w∗)

• Assume w(0) = 0

• Approximate behavior of gradient descent provides

w(τ) = w(τ−1) − ϵ∇wĴ(w(τ−1))

w(τ) = w(τ−1) − ϵH(w(τ−1) − w∗)

w(τ) − w∗ = (I − ϵH)(w(τ−1) − w∗)

w(τ) − w∗ = (I − ϵQΛQT)(w(τ−1) − w∗)

QT(w(τ) − w∗) = (I − ϵΛ)QT(w(τ−1) − w∗)

QTw(τ) = [I − (I − ϵΛ)τ]QTw∗

CS
55
1

24

Early stopping as regularizer
• Let us assume τ training iteration, ϵ learning rate

• ϵτ — measures effective capacity
• We have, Ĵ(θ) = J(w∗) + 1

2(w − w∗)H(w − w∗) and ∇wĴ(w) = H(w − w∗)

• Assume w(0) = 0

• Approximate behavior of gradient descent provides

w(τ) = w(τ−1) − ϵ∇wĴ(w(τ−1))

w(τ) = w(τ−1) − ϵH(w(τ−1) − w∗)

w(τ) − w∗ = (I − ϵH)(w(τ−1) − w∗)

w(τ) − w∗ = (I − ϵQΛQT)(w(τ−1) − w∗)

QT(w(τ) − w∗) = (I − ϵΛ)QT(w(τ−1) − w∗)

QTw(τ) = [I − (I − ϵΛ)τ]QTw∗

CS
55
1

24

Early stopping as regularizer
• Let us assume τ training iteration, ϵ learning rate

• ϵτ — measures effective capacity
• We have, Ĵ(θ) = J(w∗) + 1

2(w − w∗)H(w − w∗) and ∇wĴ(w) = H(w − w∗)

• Assume w(0) = 0

• Approximate behavior of gradient descent provides

w(τ) = w(τ−1) − ϵ∇wĴ(w(τ−1))

w(τ) = w(τ−1) − ϵH(w(τ−1) − w∗)

w(τ) − w∗ = (I − ϵH)(w(τ−1) − w∗)

w(τ) − w∗ = (I − ϵQΛQT)(w(τ−1) − w∗)

QT(w(τ) − w∗) = (I − ϵΛ)QT(w(τ−1) − w∗)

QTw(τ) = [I − (I − ϵΛ)τ]QTw∗

CS
55
1

24

Early stopping as regularizer
• Let us assume τ training iteration, ϵ learning rate

• ϵτ — measures effective capacity
• We have, Ĵ(θ) = J(w∗) + 1

2(w − w∗)H(w − w∗) and ∇wĴ(w) = H(w − w∗)

• Assume w(0) = 0

• Approximate behavior of gradient descent provides

w(τ) = w(τ−1) − ϵ∇wĴ(w(τ−1))

w(τ) = w(τ−1) − ϵH(w(τ−1) − w∗)

w(τ) − w∗ = (I − ϵH)(w(τ−1) − w∗)

w(τ) − w∗ = (I − ϵQΛQT)(w(τ−1) − w∗)

QT(w(τ) − w∗) = (I − ϵΛ)QT(w(τ−1) − w∗)

QTw(τ) = [I − (I − ϵΛ)τ]QTw∗

CS
55
1

24

Early stopping as regularizer
• Let us assume τ training iteration, ϵ learning rate

• ϵτ — measures effective capacity
• We have, Ĵ(θ) = J(w∗) + 1

2(w − w∗)H(w − w∗) and ∇wĴ(w) = H(w − w∗)

• Assume w(0) = 0

• Approximate behavior of gradient descent provides

w(τ) = w(τ−1) − ϵ∇wĴ(w(τ−1))

w(τ) = w(τ−1) − ϵH(w(τ−1) − w∗)

w(τ) − w∗ = (I − ϵH)(w(τ−1) − w∗)

w(τ) − w∗ = (I − ϵQΛQT)(w(τ−1) − w∗)

QT(w(τ) − w∗) = (I − ϵΛ)QT(w(τ−1) − w∗)

QTw(τ) = [I − (I − ϵΛ)τ]QTw∗

CS
55
1

24

Early stopping as regularizer
• Let us assume τ training iteration, ϵ learning rate

• ϵτ — measures effective capacity
• We have, Ĵ(θ) = J(w∗) + 1

2(w − w∗)H(w − w∗) and ∇wĴ(w) = H(w − w∗)

• Assume w(0) = 0

• Approximate behavior of gradient descent provides

w(τ) = w(τ−1) − ϵ∇wĴ(w(τ−1))

w(τ) = w(τ−1) − ϵH(w(τ−1) − w∗)

w(τ) − w∗ = (I − ϵH)(w(τ−1) − w∗)

w(τ) − w∗ = (I − ϵQΛQT)(w(τ−1) − w∗)

QT(w(τ) − w∗) = (I − ϵΛ)QT(w(τ−1) − w∗)

QTw(τ) = [I − (I − ϵΛ)τ]QTw∗

CS
55
1

24

Early stopping as regularizer
• Let us assume τ training iteration, ϵ learning rate

• ϵτ — measures effective capacity
• We have, Ĵ(θ) = J(w∗) + 1

2(w − w∗)H(w − w∗) and ∇wĴ(w) = H(w − w∗)

• Assume w(0) = 0

• Approximate behavior of gradient descent provides

w(τ) = w(τ−1) − ϵ∇wĴ(w(τ−1))

w(τ) = w(τ−1) − ϵH(w(τ−1) − w∗)

w(τ) − w∗ = (I − ϵH)(w(τ−1) − w∗)

w(τ) − w∗ = (I − ϵQΛQT)(w(τ−1) − w∗)

QT(w(τ) − w∗) = (I − ϵΛ)QT(w(τ−1) − w∗)

QTw(τ) = [I − (I − ϵΛ)τ]QTw∗

CS
55
1

25

Early stopping as regularizer (contd)
• Assuming w(0) = 0 and ϵ is small value such that |1− ϵλi| < 1

• From L2 regularization, we have

QTw̃ = (Λ+ αI)−1ΛQTw∗

QTw̃ = [I − (Λ+ αI)−1α]QTw∗

• Therefore we have, (I − ϵΛ)τ = (Λ+ αI)−1α

• Hence, τ ≈ 1
ϵα , α ≈ 1

τϵ

CS
55
1

25

Early stopping as regularizer (contd)
• Assuming w(0) = 0 and ϵ is small value such that |1− ϵλi| < 1

• From L2 regularization, we have

QTw̃ = (Λ+ αI)−1ΛQTw∗

QTw̃ = [I − (Λ+ αI)−1α]QTw∗

• Therefore we have, (I − ϵΛ)τ = (Λ+ αI)−1α

• Hence, τ ≈ 1
ϵα , α ≈ 1

τϵ

CS
55
1

25

Early stopping as regularizer (contd)
• Assuming w(0) = 0 and ϵ is small value such that |1− ϵλi| < 1

• From L2 regularization, we have

QTw̃ = (Λ+ αI)−1ΛQTw∗

QTw̃ = [I − (Λ+ αI)−1α]QTw∗

• Therefore we have, (I − ϵΛ)τ = (Λ+ αI)−1α

• Hence, τ ≈ 1
ϵα , α ≈ 1

τϵ

CS
55
1

26

Bagging
• Also known as Bootstrap aggregating
• Reduces generalization error by combining several models
• Train multiple models then vote on output for the test example

• Also known as model averaging, ensemble method
• Suppose we have k regression model and each model makes an error ϵi such that E(ϵi) = 0,
E(ϵ2i) = v, E(ϵiϵj) = c

• Error made by average prediction 1
k
∑

i ϵi

• Expected mean square error

E

(1

k
∑

i
ϵi

)2
 =

1

k2E

∑
i

ϵ2i +
∑
i̸=j

ϵiϵj

 =
v
k +

k − 1

k c

• If ϵi and ϵj are uncorrelated, ie. c = 0, then expected mse will be v
k - Significant reduction in

error
• If ϵi and ϵj are correlated, ie. c = v, then expected mse will be v - No change in error

CS
55
1

26

Bagging
• Also known as Bootstrap aggregating
• Reduces generalization error by combining several models
• Train multiple models then vote on output for the test example

• Also known as model averaging, ensemble method
• Suppose we have k regression model and each model makes an error ϵi such that E(ϵi) = 0,
E(ϵ2i) = v, E(ϵiϵj) = c

• Error made by average prediction 1
k
∑

i ϵi

• Expected mean square error

E

(1

k
∑

i
ϵi

)2
 =

1

k2E

∑
i

ϵ2i +
∑
i̸=j

ϵiϵj

 =
v
k +

k − 1

k c

• If ϵi and ϵj are uncorrelated, ie. c = 0, then expected mse will be v
k - Significant reduction in

error
• If ϵi and ϵj are correlated, ie. c = v, then expected mse will be v - No change in error

CS
55
1

27

Dropout
• It can be treated as a method of making bagging practical for ensembles of many large neural

networks
• Bagging is impractical with large number of models
• Dropout is capable of handling exponentially many networks

• It trains the ensemble consiting of all subnetworks that can be formed by removing non-output
units for the base network

• Removal of a node can be realized by multiplying it with 0, hence, binary mask is used
• Typically, dropout probability for input layer is low (∼ 0.2). Hidden layer can have high

probability (∼ 0.5)
• Dropout is not used after training when making a prediction with the fit network.
• If a unit is retained with probability p during training, the outgoing weights of that unit are

multiplied by p at test time

x1 x2

h1 h2

y
x1 x2

h1 h2

y

x2

h1 h2

y

x1

h1 h2

y

x1 x2

h2

y

x1 x2

h1

y

h1 h2

y

x1 x2

y

x2

h2

y

x1

h1

y

x2

h1

y

x1

h2

y

x1

y

x2

y

h1

y

h2

y y

CS
55
1

28

Dropout: sub-networks

µx1 x1 x2 µx2

x̂1 x̂2

µh1 h1 h2 µh2

ĥ1 ĥ2

y

x1 x2

h1 h2

y

CS
55
1

29

Dropout
• µu denotes the binary mask for node u

Panda Noise Gibbon

Image source: Deep Learning Book

CS
55
1

30

Adversarial training
• It is expected that outcome of an example to be constant in the close vicinity of the training

data
• Small change in input can lead to misclassification because linearity with high coefficient

CS
55
1

31

Summary
• Goal of regularization techniques is to reduce generalization error. Large data sets help in

generalization
• Increasing the number of units in hidden layer increases the model capacity. Increasing the

depth helps in reducing the number of units in intermediate layers.
• Common approaches for regularization

• Penalty based
• Ensemble method
• Introducing stochasticity to inputs and weights

