# **CS551: Introduction to Deep Learning**

#### Regularization



#### **Ariiit Mondal**

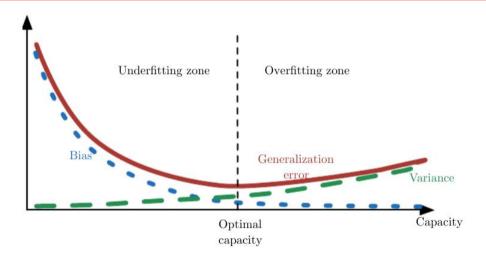
Dept. of Computer Science & Engineering Indian Institute of Technology Patna arijit@iitp.ac.in

1 CS551

#### Regularization in DL

- In DL regularization works by trading increased bias for reduced variance
- Consider the following scenario
  - Excluded the true data generating process
    - Underfitting, inducing bias
  - Matched the true data generating process
    - Desired one
  - Included the generating process but also many other generating process
    - Overfitting, variance dominates
  - Goal of regularizer is to take an model overfit zone to desired zone

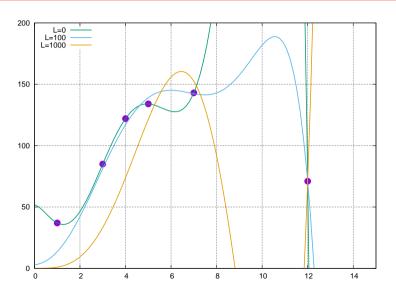
#### **Trade off Bias and Variance**



## Norm penalties

- Most of the regularization approaches are based on limiting the capacity of the model
- Objective function becomes  $\tilde{J}(\theta; X, y) = J(\theta; X, y) + \alpha\Omega(\theta)$ 
  - ullet  $\alpha$  Hyperparameter denotes relative contribution
  - Minimization of  $\tilde{J}$  implies minimization of J
  - ullet  $\Omega$  penalizes only the weight of affine transform
    - Bias remain unregularized
  - Regularizing bias may lead to underfitting

# **Example: Weight decay**



- Weights are closer to origin as  $\Omega(\theta) = \frac{1}{2} \|\mathbf{w}\|_2^2$ • Also known as ridge regression or Tikhonov regression
- Objective function  $\tilde{J}(\mathbf{w}; \mathbf{X}, \mathbf{y}) = \frac{\alpha}{2} \mathbf{w}^T \mathbf{w} + J(\mathbf{w}; \mathbf{X}, \mathbf{y})$

- Weights are closer to origin as  $\Omega(\theta) = \frac{1}{2} \|\mathbf{w}\|_2^2$ • Also known as ridge regression or Tikhonov regression

• Gradient  $\nabla_{\mathbf{w}} \tilde{J}(\mathbf{w}; \mathbf{X}, \mathbf{v}) = \alpha \mathbf{w} + \nabla_{\mathbf{w}} J(\mathbf{w}; \mathbf{X}, \mathbf{v})$ 

- Objective function  $\tilde{J}(w; X, y) = \frac{\alpha}{2} w^T w + J(w; X, y)$

- Also known as ridge regression or Tikhonov regression
- Objective function  $\tilde{J}(w; X, y) = \frac{\alpha}{2} w^T w + J(w; X, y)$
- Gradient  $\nabla_{w} \tilde{J}(w; X, y) = \alpha w + \nabla_{w} J(w; X, y)$

 $w = w - \epsilon(\alpha w + \nabla_w J(w; X, y))$ 

- New weights

- Weights are closer to origin as  $\Omega(\theta) = \frac{1}{2} \|\mathbf{w}\|_2^2$

- Also known as ridge regression or Tikhonov regression
- Objective function  $\tilde{J}(w; X, y) = \frac{\alpha}{2} w^T w + J(w; X, y)$

- Gradient  $\nabla_{w} \tilde{J}(w; X, y) = \alpha w + \nabla_{w} J(w; X, y)$
- New weights

 $\mathbf{w} = \mathbf{w} - \epsilon(\alpha \mathbf{w} + \nabla_{\mathbf{w}} \mathbf{J}(\mathbf{w}; \mathbf{X}, \mathbf{y})) = \mathbf{w}(1 - \epsilon \alpha) - \epsilon \nabla_{\mathbf{w}} \mathbf{J}(\mathbf{w}; \mathbf{X}, \mathbf{y})$ 

- Weights are closer to origin as  $\Omega(\theta) = \frac{1}{2} \|\mathbf{w}\|_2^2$

- Weights are closer to origin as  $\Omega(\theta) = \frac{1}{2} \|\mathbf{w}\|_2^2$ • Also known as ridge regression or Tikhonov regression
- Objective function  $\tilde{J}(w; X, y) = \frac{\alpha}{2} w^T w + J(w; X, y)$
- Gradient  $\nabla_{w} \tilde{J}(w; X, y) = \alpha w + \nabla_{w} J(w; X, y)$
- New weights

  - $\mathbf{w} = \mathbf{w} \epsilon(\alpha \mathbf{w} + \nabla_{\mathbf{w}} J(\mathbf{w}; \mathbf{X}, \mathbf{y})) = \mathbf{w}(1 \epsilon \alpha) \epsilon \nabla_{\mathbf{w}} J(\mathbf{w}; \mathbf{X}, \mathbf{y})$
- Assuming quadratic nature of curve in the neighborhood of
  - $w^* = \arg\min J(w)$
  - J(w) unregularized cost
- Perfect scenario for linear regression with MSE

#### Jacobian & Hessian

- Derivative of a function having single input and single output  $\frac{dy}{dx}$
- Derivative of function having vector input and vector output that is,  $f: \mathbb{R}^m \to \mathbb{R}^n$ 
  - Jacobian  $J \in \mathbb{R}^{n \times m}$  of f defined as  $J_{i,j} = \frac{\partial}{\partial x_i} f(x)_i$
- Second derivative is also required sometime
  - For example,  $f: \mathbb{R}^n \to \mathbb{R}$ ,  $\frac{\partial^2}{\partial x_i \partial x_i} f$
  - If second derivative is 0, then there is no curvature
- Hessian matrix  $H(f)(x)_{ij} = \frac{\partial^2}{\partial x_i \partial x_i} f(x)$

#### Jacobian & Hessian

- Derivative of a function having single input and single output  $\frac{dy}{dx}$
- Derivative of function having vector input and vector output that is,  $f: \mathbb{R}^m \to \mathbb{R}^n$ 
  - Jacobian  $J \in \mathbb{R}^{n \times m}$  of f defined as  $J_{i,j} = \frac{\partial}{\partial x_i} f(x)_i$
- Second derivative is also required sometime
  - For example,  $f: \mathbb{R}^n \to \mathbb{R}$ ,  $\frac{\partial^2}{\partial x_i \partial x_i} f$
  - If second derivative is 0, then there is no curvature
- Hessian matrix  $H(f)(x)_{ij} = \frac{\partial^2}{\partial x_i \partial x_i} f(x)$ 
  - Jacobian of gradient
  - Symmetric

# **Directional derivative**

• The directional derivative of a scalar function  $f(\mathbf{x}) = f(x_1, x_2, \dots, x_n)$  along a vector  $\mathbf{v} =$ 

• If f is differentiable at point x then

The directional derivative of a scalar function 
$$f(\mathbf{x}) = f(x_1, x_2, \dots, v_n)$$
 is given by

 $\nabla_{\mathbf{v}} f(\mathbf{x}) = \lim_{h \to 0} \frac{f(\mathbf{x} + h\mathbf{v}) - f(\mathbf{x})}{h}$ 

 $\nabla_{\mathbf{v}} f(\mathbf{x}) = \nabla f(\mathbf{x}) \cdot \mathbf{v}$ 

derivative of a scalar function 
$$f(\mathbf{x}) = f(x_1, x_2, \dots, x_n)$$

# **Taylor series expansion** • A real valued function differentiable at point $x_0$ can be expressed as

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \frac{f^{(3)}(x_0)}{3!}(x - x_0)^3 + \cdots$$



# **Taylor series expansion**

• A real valued function differentiable at point 
$$x_0$$
 can be expressed as

When input is a vector

$$f(x(0)) + (x \cdot$$

• g — gradient at x<sup>(0)</sup>, H — Hessian at x<sup>(0)</sup>

$$f(x) \approx f(x^{(0)}) + (x - x^{(0)})^T g + \frac{1}{2} (x - x^{(0)})^T H(x - x^{(0)})$$



$$(x-x_0)^3 +$$

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \frac{f^{(3)}(x_0)}{3!}(x - x_0)^3 + \cdots$$



When input is a vector

$$\sigma$$
 — gradient at  $\chi(0)$ 

$$ullet$$
 g — gradient at  $\mathbf{x}^{(0)}$ , H — Hessian at  $\mathbf{x}^{(0)}$ 

• g — gradient at 
$$\mathbf{x}^{(0)}$$
, H — Hessian at  $\mathbf{x}^{(0)}$   
• If  $\epsilon$  is the learning rate, then  $f(\mathbf{x}^{(0)} - \epsilon \mathbf{g}) = f(\mathbf{x}^{(0)}) - \epsilon \mathbf{g}^T \mathbf{g} + \frac{1}{2} \epsilon^2 \mathbf{g}^T \mathbf{H} \mathbf{g}$ 

$$\mathsf{x}^{(0)}$$
, H — Hessian at  $\mathsf{x}^{(0)}$ 

$$(0)$$
  $g + \frac{1}{2}(x - x)$ 

$$f(x) \approx f(x^{(0)}) + (x - x^{(0)})^T g + \frac{1}{2} (x - x^{(0)})^T H(x - x^{(0)})$$

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \frac{f^{(3)}(x_0)}{3!}(x - x_0)^3 + \cdots$$

# **Quadratic approximation**

- Let  $w^* = \underset{w}{\operatorname{arg min}_{w}} J(w)$  be optimum weights for minimal unregularized cost
- If the objective function is quadratic then

$$\hat{J}(\boldsymbol{\theta}) = J(\mathbf{w}^*) + \frac{1}{2}(\mathbf{w} - \mathbf{w}^*)^T \mathbf{H}(\mathbf{w} - \mathbf{w}^*)$$

- H is the Hessian matrix of J with respect to w at w\*
- No first order term as w\* is minimum
- Minimum of  $\hat{J}$  occurs when  $\nabla_{\mathbf{w}}\hat{J}(\mathbf{w}) = \mathsf{H}(\mathbf{w} \mathbf{w}^*) = 0$
- With weight decay we have

• H is positive semidefinite

 $\alpha \tilde{\mathbf{w}} + \mathbf{H}(\tilde{\mathbf{w}} - \mathbf{w}^*) = 0 \Rightarrow (\mathbf{H} + \alpha \mathbf{I})\tilde{\mathbf{w}} = \mathbf{H}\mathbf{w}^* \Rightarrow \tilde{\mathbf{w}} = (\mathbf{H} + \alpha \mathbf{I})^{-1}\mathbf{H}\mathbf{w}^*$ 

## **Quadratic approximation (contd)**

- As  $\alpha \to 0$ , regularized solution  $\tilde{\mathbf{w}}$  approaches to  $\mathbf{w}^*$
- As  $\alpha \neq 0$ 
  - H is symmetric, therefore  $H = Q\Lambda Q^T$ . Now we have

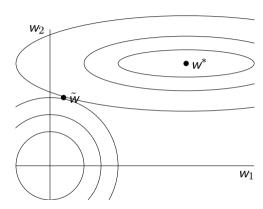
$$\tilde{\mathbf{w}} = (\mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^T + \alpha \mathbf{I})^{-1} \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^T \mathbf{w}^*$$

$$= [\mathbf{Q} (\mathbf{\Lambda} + \alpha \mathbf{I}) \mathbf{Q}^T]^{-1} \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^T \mathbf{w}^*$$

$$= \mathbf{Q} (\mathbf{\Lambda} + \alpha \mathbf{I})^{-1} \mathbf{\Lambda} \mathbf{Q}^T \mathbf{w}^*$$

- Weight decay rescale w\* along the eigen vector of H
  - Component of  $\mathbf{w}^*$  that is aligned to i-th eigen vector, will be rescaled by a factor of  $\frac{\lambda_i}{\lambda_i + \alpha}$
  - $\lambda_i \gg \alpha$  regularization effect is small

# $L^2$ Norm: Geometrical interpretation



CS551

# • For linear regression cost function is $(Xw - y)^T(Xw - y)$ • Using $L^2$ regularization we have $(Xw - y)^T(Xw - y) + \frac{1}{2}\alpha w^T w$

# Linear regression

- For linear regression cost function is  $(Xw y)^T(Xw y)$
- Using  $L^2$  regularization we have  $(Xw y)^T(Xw y) + \frac{1}{2}\alpha w^T w$
- Solution for normal equation  $\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$

## **Linear regression**

• For linear regression cost function is  $(Xw - y)^T(Xw - y)$ 

• Solution for with weight decay  $\mathbf{w} = (\mathbf{X}^T \mathbf{X} + \alpha \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}$ 

- Using  $L^2$  regularization we have  $(Xw y)^T(Xw y) + \frac{1}{2}\alpha w^T w$
- Solution for normal equation  $\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$
- 51

$$ullet$$
 Formally it is defined as  $\Omega(oldsymbol{ heta}) = \| \mathsf{w} \|_1 = \sum_i |w_i|$ 

• Regularized objective function will be  $\tilde{J}(w; X, y) = \alpha ||w||_1 + J(w; X, y)$ 

# $L^1$ regularization

- Formally it is defined as  $\Omega(oldsymbol{ heta}) = \|\mathbf{w}\|_1 = \sum |w_i|$
- Regularized objective function will be  $\tilde{J}(w; X, y) = \alpha ||w||_1 + J(w; X, y)$
- The gradient will be  $\nabla_{w} \tilde{J}(w; X, y) = \alpha \operatorname{sign}(w) + \nabla_{w} J(w; X, y)$
- Gradient does not scale linearly compared to  $L^2$  regularization
- Taylor series expansion with approximation provides  $\nabla_{\mathbf{w}} \hat{\mathbf{J}}(\mathbf{w}) = \mathbf{H}(\mathbf{w} \mathbf{w}^*)$
- - Simplification can be made by assuming H to be diagonal
- Apply PCA on the input dataset

• So, analytical solution in each dimension will be  $w_i = \operatorname{sign}(w_i^*) \max \left\{ |w_i^*| - \frac{\alpha}{H_i}, 0 \right\}$ 

• If  $w_i^* \leq \frac{\alpha}{H_{i,i}}$ , optimal value for  $w_i$  will be 0 under regularization • If  $w_i^* > \frac{\alpha}{H_{i,i}}$ ,  $w_i$  moves towards 0 with a distance equal to  $\frac{\alpha}{H_{i,i}}$ 

- Quadratic approximation of  $L^1$  regularization objective function becomes  $\hat{J}(w; X, y)$  $J((\mathbf{w}^*; \mathbf{X}, \mathbf{y}) + \sum_{i} \left[ \frac{1}{2} H_{i,i} (\mathbf{w}_i - \mathbf{w}_i^*)^2 + \alpha |\mathbf{w}_i| \right]$

• Consider the situation when  $w_i^* > 0$ 

 $\tilde{J}(\boldsymbol{\theta}; X, v) = J(\boldsymbol{\theta}; X, v) + \alpha \Omega(\boldsymbol{\theta})$ 

• Cost function regularized by norm penalty is given by

$$J(\theta; \lambda, y) = J(\theta; \lambda, y) + \alpha \Omega(\theta)$$

• Let us assume f(x) needs to be optimized under a set of equality constraints  $g^{(i)}(x) = 0$  and

$$h^{(j)}(x) \leq 0$$
, then generalized Lagrangian

inequality constraints  $h^{(j)}(x) \leq 0$ , then generalized Lagrangian is then defined as

$$h^{(j)}(x) \leq 0$$
, then generalized Lagrangian

$$s h^{(j)}(x) \le 0$$
, then generalized Lagrangian

inequality constraints 
$$h^{(j)}(x) \le 0$$
, then generalized Lag

$$L(x, \lambda, \alpha) = f(x) + \sum \lambda_i g^{(i)}(x) + \sum \alpha_j h^{(j)}(x)$$

$$L(\mathsf{x}, \boldsymbol{\lambda}, \boldsymbol{lpha})$$
 :

If there exists a solution then

$$\min_{\mathsf{x}}\max_{\boldsymbol{\lambda}}$$

• This can be solved by 
$$\nabla_{\mathbf{x},\boldsymbol{\lambda},\boldsymbol{\alpha}} L(\mathbf{x},\boldsymbol{\lambda},\boldsymbol{\alpha}) = 0$$

$$\min_{\mathsf{x}} \max_{\mathbf{\lambda}} \max_{\mathbf{\alpha} \geq 0} L(\mathsf{x}, \mathbf{\lambda}, \mathbf{\alpha}) = \min_{\mathsf{x}} f(\mathsf{x})$$



ullet Suppose  $\Omega(oldsymbol{ heta}) < k$  needs to be satisfied. Then regularization equation becomes

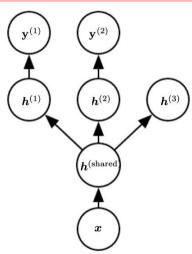
$$L(\boldsymbol{\theta}, \alpha; X, y) = J(\boldsymbol{\theta}; X, y) + \alpha(\Omega(\boldsymbol{\theta}) - k)$$

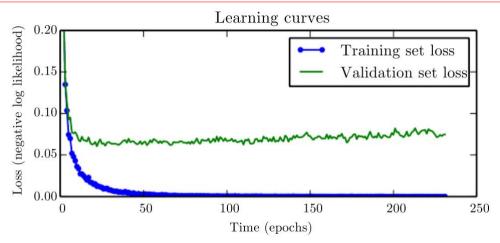
• Solution to the constrained problem

$$\boldsymbol{\theta}^* = \arg\min_{\boldsymbol{\theta}} \max_{\alpha > 0} L(\boldsymbol{\theta}, \alpha)$$

- •
- If data are limited, fake data can be added to training set
  - Computer vision problem
  - Speech recognition
  - Easiest for classification problem
- Very effective in object recognition problem
- Translating
  - Rotating
  - Scaling
    - Need to be careful for 'b' and 'd' or '6' and '9'
- Injecting noise to input data can be viewed as data augmentation

# **Multitask learning**





# Early stopping approach

occurrences. If the count is less than a threshold go to step 2, otherwise exit.

- Initialize the parameters
- Run training algorithm for n steps and update i = i + n
- Compute error on the validation set (v')
- If v' is less than previous best, then update the same. Start step 2 again • If  $\mathbf{v}'$  is more than the previous best, then increment the count that stores the number of such

- ullet Let us assume au training iteration, ullet learning rate
  - ullet  $\epsilon au$  measures effective capacity
- We have,  $\hat{J}(\theta) = J(w^*) + \frac{1}{2}(w w^*)H(w w^*)$  and  $\nabla_w \hat{J}(w) = H(w w^*)$
- Assume  $w^{(0)} = 0$

- Let us assume au training iteration,  $\epsilon$  learning rate
  - ullet  $\epsilon au$  measures effective capacity
- We have,  $\hat{J}(\theta) = J(w^*) + \frac{1}{2}(w w^*)H(w w^*)$  and  $\nabla_w \hat{J}(w) = H(w w^*)$
- Assume  $\mathbf{w}^{(0)} = 0$
- Approximate behavior of gradient descent provides

 $\mathbf{w}^{(\tau)} = \mathbf{w}^{(\tau-1)} - \epsilon \nabla_{\mathbf{w}} \hat{\mathbf{J}}(\mathbf{w}^{(\tau-1)})$ 

- $\bullet$  Let us assume  ${\color{blue}\tau}$  training iteration,  ${\color{blue}\epsilon}$  learning rate
  - ullet  $\epsilon au$  measures effective capacity
- We have,  $\hat{J}(\theta) = J(w^*) + \frac{1}{2}(w w^*)H(w w^*)$  and  $\nabla_w \hat{J}(w) = H(w w^*)$
- Assume  $\mathbf{w}^{(0)} = 0$
- Approximate behavior of gradient descent provides

24

#### Early stopping as regularizer

- ullet Let us assume au training iteration,  $\epsilon$  learning rate
  - ullet  $\epsilon au$  measures effective capacity
- We have,  $\hat{J}(\theta) = J(w^*) + \frac{1}{2}(w w^*)H(w w^*)$  and  $\nabla_w \hat{J}(w) = H(w w^*)$
- Assume  $w^{(0)} = 0$
- Approximate behavior of gradient descent provides

$$\mathbf{w}^{(\tau)} = \mathbf{w}^{(\tau-1)} - \epsilon \nabla_{\mathbf{w}} \hat{\mathbf{J}}(\mathbf{w}^{(\tau-1)})$$
$$\mathbf{w}^{(\tau)} = \mathbf{w}^{(\tau-1)} - \epsilon \mathbf{H}(\mathbf{w}^{(\tau-1)} - \mathbf{w}^*)$$

- Let us assume au training iteration,  $\epsilon$  learning rate
  - ullet  $\epsilon au$  measures effective capacity
- We have,  $\hat{J}(\theta) = J(w^*) + \frac{1}{2}(w w^*)H(w w^*)$  and  $\nabla_w \hat{J}(w) = H(w w^*)$
- Assume  $w^{(0)} = 0$
- Approximate behavior of gradient descent provides

$$w^{(\tau)} = w^{(\tau-1)} - \epsilon \nabla_{w} \hat{J}(w^{(\tau-1)})$$

$$w^{(\tau)} = w^{(\tau-1)} - \epsilon H(w^{(\tau-1)} - w^{*})$$

$$w^{(\tau)} - w^{*} = (I - \epsilon H)(w^{(\tau-1)} - w^{*})$$

#### Early stopping as regularizer

- Let us assume  $\tau$  training iteration,  $\epsilon$  learning rate
  - $\epsilon \tau$  measures effective capacity
- We have,  $\hat{J}(\theta) = J(w^*) + \frac{1}{2}(w w^*)H(w w^*)$  and  $\nabla_w \hat{J}(w) = H(w w^*)$
- Assume  $w^{(0)} = 0$
- Approximate behavior of gradient descent provides

$$w^{(\tau)} = w^{(\tau-1)} - \epsilon \nabla_{w} \hat{J}(w^{(\tau-1)})$$

$$w^{(\tau)} = w^{(\tau-1)} - \epsilon H(w^{(\tau-1)} - w^{*})$$

$$w^{(\tau)} - w^{*} = (I - \epsilon H)(w^{(\tau-1)} - w^{*})$$

$$w^{(\tau)} - w^{*} = (I - \epsilon Q \Lambda Q^{T})(w^{(\tau-1)} - w^{*})$$

- ullet Let us assume au training iteration,  $\epsilon$  learning rate
  - ullet  $\epsilon au$  measures effective capacity
- We have,  $\hat{J}(\theta) = J(w^*) + \frac{1}{2}(w w^*)H(w w^*)$  and  $\nabla_w \hat{J}(w) = H(w w^*)$
- Assume  $w^{(0)} = 0$
- Approximate behavior of gradient descent provides

```
w^{(\tau)} = w^{(\tau-1)} - \epsilon \nabla_{w} \hat{J}(w^{(\tau-1)})
w^{(\tau)} = w^{(\tau-1)} - \epsilon H(w^{(\tau-1)} - w^{*})
w^{(\tau)} - w^{*} = (I - \epsilon H)(w^{(\tau-1)} - w^{*})
w^{(\tau)} - w^{*} = (I - \epsilon Q \Lambda Q^{T})(w^{(\tau-1)} - w^{*})
Q^{T}(w^{(\tau)} - w^{*}) = (I - \epsilon \Lambda)Q^{T}(w^{(\tau-1)} - w^{*})
```

## Early stopping as regularizer

- Let us assume  $\tau$  training iteration,  $\epsilon$  learning rate
  - $\epsilon \tau$  measures effective capacity
- We have,  $\hat{J}(\theta) = J(w^*) + \frac{1}{2}(w w^*)H(w w^*)$  and  $\nabla_w \hat{J}(w) = H(w w^*)$

• Assume 
$$\mathbf{w}^{(0)} = 0$$
• Approximate behavior of gradient descent provides 
$$\begin{aligned} \mathbf{w}^{(\tau)} &=& \mathbf{w}^{(\tau-1)} - \epsilon \nabla_{\mathbf{w}} \hat{\mathbf{J}}(\mathbf{w}^{(\tau-1)}) \\ \mathbf{w}^{(\tau)} &=& \mathbf{w}^{(\tau-1)} - \epsilon \mathbf{H}(\mathbf{w}^{(\tau-1)} - \mathbf{w}^*) \\ \mathbf{w}^{(\tau)} - \mathbf{w}^* &=& (\mathbf{I} - \epsilon \mathbf{H})(\mathbf{w}^{(\tau-1)} - \mathbf{w}^*) \\ \mathbf{w}^{(\tau)} - \mathbf{w}^* &=& (\mathbf{I} - \epsilon \mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^T)(\mathbf{w}^{(\tau-1)} - \mathbf{w}^*) \\ \mathbf{Q}^T(\mathbf{w}^{(\tau)} - \mathbf{w}^*) &=& (\mathbf{I} - \epsilon \boldsymbol{\Lambda}) \mathbf{Q}^T(\mathbf{w}^{(\tau-1)} - \mathbf{w}^*) \end{aligned}$$

 $Q^T W^{(\tau)} = [I - (I - \epsilon \Lambda)^{\tau}] Q^T W^*$ 

- From  $L^2$  regularization, we have

 $Q^T \tilde{W} = (\Lambda + \alpha I)^{-1} \Lambda Q^T W^*$ 

- From  $L^2$  regularization, we have

$$Q^{T}\tilde{w} = (\Lambda + \alpha I)^{-1}\Lambda Q^{T}w^{*}$$

$$Q^{T}\tilde{w} = [I - (\Lambda + \alpha I)^{-1}\alpha]Q^{T}w^{*}$$







- From  $L^2$  regularization, we have

• Therefore we have,  $(\mathbf{I} - \epsilon \mathbf{\Lambda})^{\tau} = (\mathbf{\Lambda} + \alpha \mathbf{I})^{-1} \alpha$ 

• Hence,  $\tau \approx \frac{1}{\epsilon \alpha}$ ,  $\alpha \approx \frac{1}{\tau \epsilon}$ 

- $Q^{T}\tilde{w} = [I (\Lambda + \alpha I)^{-1}\alpha]Q^{T}w^{*}$
- $Q^{T}\tilde{w} = (\Lambda + \alpha I)^{-1}\Lambda Q^{T}w^{*}$

- Also known as Bootstrap aggregating
- Reduces generalization error by combining several models
  - Train multiple models then vote on output for the test example
    - Also known as model averaging, ensemble method

• Suppose we have 
$$k$$
 regression model and each model makes an error  $\epsilon_i$  such that  $\mathbb{E}(\epsilon_i) = 0$ ,  $\mathbb{E}(\epsilon_i^2) = v$ ,  $\mathbb{E}(\epsilon_i \epsilon_j) = c$ 

- Error made by average prediction  $\frac{1}{L}\sum_{i}\epsilon_{i}$
- Expected mean square error

$$\mathbb{E}\left[\left(rac{1}{k}\sum_{i}\epsilon_{i}
ight)^{2}
ight]=rac{1}{k^{2}}\mathbb{E}\left[\sum_{i}\left(\epsilon_{i}^{2}+\sum_{i
eq j}\epsilon_{i}\epsilon_{j}
ight)
ight]=rac{v}{k}+rac{k-1}{k}c$$

# **Bagging**

- Also known as model averaging, ensemble method
- Suppose we have k regression model and each model makes an error  $\epsilon_i$  such that  $\mathbb{E}(\epsilon_i) = 0$ ,
- Error made by average prediction  $\frac{1}{k} \sum_{i} \epsilon_{i}$
- Expected mean square error

- $\mathbb{E}\left|\left(\frac{1}{k}\sum_{i}\epsilon_{i}\right)^{2}\right| = \frac{1}{k^{2}}\mathbb{E}\left|\sum_{i}\left(\epsilon_{i}^{2} + \sum_{i\neq i}\epsilon_{i}\epsilon_{j}\right)\right| = \frac{v}{k} + \frac{k-1}{k}c$

error

 $\mathbb{E}(\epsilon_i^2) = \mathsf{v}, \ \mathbb{E}(\epsilon_i \epsilon_i) = \mathsf{c}$ 

- Train multiple models then vote on output for the test example
- Reduces generalization error by combining several models
- Also known as Bootstrap aggregating

• If  $\epsilon_i$  and  $\epsilon_i$  are uncorrelated, ie. c=0, then expected mse will be  $\frac{v}{k}$  - Significant reduction in

ullet If  $\epsilon_i$  and  $\epsilon_j$  are correlated, ie. c=v, then expected mse will be v - No change in error

# Dropout

- It can be treated as a method of making bagging practical for ensembles of many large neural
- Bagging is impractical with large number of models
- Dropout is capable of handling exponentially many networks
- It trains the ensemble consiting of all subnetworks that can be formed by removing non-output

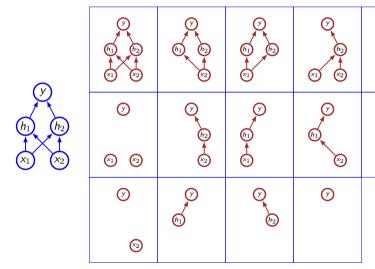
  - units for the base network
- Removal of a node can be realized by multiplying it with 0, hence, binary mask is used
- Typically, dropout probability for input layer is low ( $\sim 0.2$ ). Hidden layer can have high
- probability ( $\sim 0.5$ )
- Dropout is not used after training when making a prediction with the fit network.
- If a unit is retained with probability p during training, the outgoing weights of that unit are
- multiplied by p at test time

networks

### **Dropout: sub-networks**

(y)

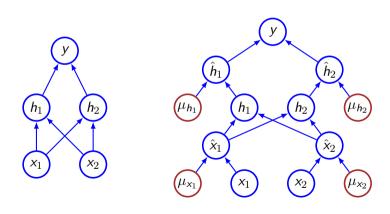
 $(x_1)$ 



CS551

21

ullet  $\mu_u$  denotes the binary mask for node u



**CS551** 

### **Adversarial training**

- It is expected that outcome of an example to be constant in the close vicinity of the training data
- Small change in input can lead to misclassification because linearity with high coefficient

