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Minimization of cost function
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Problem of optimization
• Differs from traditional pure optimization problem
• Performance of a task is optimized indirectly
• We optimize J(θ) = E(x,y)∼p̂dataL(f(x,θ), y) where p̂ is the empirical distribution
• We would like to optimize J∗(θ) = E(x,y)∼pdataL(f(x,θ), y) where p is the data generating

distribution
• Also known as risk

• We hope minimizing J will minimize J∗



CS
55

1

5

Empirical risk minimization
• Target is to reduce risk
• If the true distribution is known, risk minimization is an optimization problem
• When pdata(x, y) is unknown, it becomes machine learning problem
• Simplest way to convert machine learning problem to optimization problem is to minimize

expected cost of training set
• We minimize empirical risk

E(x,y)∼p̂data [L(f(x,θ), y)] =
1

m
∑

i
L(f(x(i),θ), y(i))

• We can hope empirical risk minimizes the risk as well
• Empirical risk minimization is prone to overfitting
• Gradient based solution approach may lead to problem with 0-1 loss cost function
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Surrogate loss function
• Loss function may not be optimized efficiently

• Exact minimization of 0-1 loss is typically intractable
• Surrogate loss function is used

• Proxy function for the actual loss function
• Negative log likelihood of correct class used as surrogate function

• There are cases when surrogate loss function results in better learning
• 0-1 loss of test set often continues to decrease for a long time after training set 0-1 loss

has reached to 0
• A training algorithm does not halt at local minima usually

• Tries to minimize surrogate loss function but halts when validation loss starts to increase
• Training function can halt when surrogate function has huge derivative
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Batch
• Objective function usually decomposes as a sum over training example
• Typically in machine learning update of parameters is done based on an expected value of

the cost function estimated using only a subset of the terms of full cost function

• Maximum likelihood problem θML = arg max
θ

m∑
i=1

log pmodel(x(i), y(i),θ)

• Maximizing this sum is equivalent to maximizing the expectation over empirical distribution
J(θ) = E(x,y)∼p̂data log pmodel(x, y,θ)
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Batch (contd.)
• Common gradient is given by ∇θ = E(x,y)∼p̂data∇θ log pmodel(x, y,θ)

• It becomes expensive as we need to compute for all examples
• Random sample is chosen, then average of the same is taken
• Standard error in mean is σ√n where σ is the true standard deviation
• Redundancy in training examples is an issue

• Optimization algorithm that uses entire training set is called batch of deterministic gradient
descent

• Optimization algorithm that uses single example at a time is known as stochastic gradient
descent or online method
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Minibatch
• Larger batch provides more accurate estimate of the gradient but with lesser than linear

returns
• Multicore architecture are usually underutilized by small batches
• If all examples are to be processed parallely then the amount of memory scales with batch

size
• Sometime, better run time is observed with specific size of the array
• Small batch can add regularization effect due to noise they add in learning process
• Methods that update the parameters based on g only are usually robust and can handle small

batch size ∼ 100
• With Hessian matrix batch size becomes ∼ 10,000 (Require to minimize H−1g)
• SGD minimizes generalization error on minibatches drawn from a stream of data
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Local quadratic approximation
• Taylor expansion of J(w) around ŵ in weight space is given by

J(w) = J(ŵ) + (w − ŵ)Tg +
1

2
(w − ŵ)TH(w − ŵ)

where g = ∇J(w)|w=ŵ and H = ∇∇J(w)|w=ŵ

• Gradient can be approximated as ∇J(w) = g + H(w − ŵ)
• In case w∗ is a minimum point, then the expansion can be written as

J(w) = J(w∗) +
1

2
(w − w∗)TH(w − w∗), H needs to be evaluated at w∗

• Consider the eigenvalue equation for the Hessian matrix ie. Hui = λiui

• The eigenvectors ui form a complete orthonormal set so that uiuj = 0 when i ̸= j and 1
when i = j

• Treating eigenvectors as basis, we can write w − w∗ =
∑

i
αiui. Now we have

J(w) = J(w∗) +
1

2

∑
i
λiα

2
i
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(w − ŵ)TH(w − ŵ)
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• In case w∗ is a minimum point, then the expansion can be written as

J(w) = J(w∗) +
1

2
(w − w∗)TH(w − w∗), H needs to be evaluated at w∗

• Consider the eigenvalue equation for the Hessian matrix ie. Hui = λiui

• The eigenvectors ui form a complete orthonormal set so that uiuj = 0 when i ̸= j and 1
when i = j

• Treating eigenvectors as basis, we can write w − w∗ =
∑

i
αiui. Now we have

J(w) = J(w∗) +
1

2

∑
i
λiα

2
i



CS
55

1

10

Local quadratic approximation
• Taylor expansion of J(w) around ŵ in weight space is given by
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Issues in optimization
• Ill conditioning
• Local minima
• Plateaus
• Saddle points
• Flat region

• Cliffs
• Exploding gradients
• Vanishing gradients
• Long term dependencies
• Inexact gradients
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Ill conditioning
• Ill conditioning of Hessian matrix

• Common problem in most of the numerical optimization
• The ratio of smallest to largest eigen value determines the condition number
• We have the following

f(x) = f(x(0)) + (x − x(0))Tg +
1

2
(x − x(0))TH(x − x(0))

f(x − ϵg) = f(x(0))− ϵgTg +
1

2
ϵgTHϵg

• It becomes a problem when 1
2ϵ

2gTHg − ϵgTg > 0

• In many cases gradient norm does not shrink much during learning and gTHg grows
more rapidly

• Makes the learning process slow



CS
55

1

13

Local minima
• For convex optimization problem local minima is often acceptable
• For nonconvex function like neural network many local minima are possible

• This is not a major problem
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Local minima (contd.)
• Neural network and any models with multiple equivalently parameterized latent variables

results in local minima
• This is due to model identifiability
• Model is identifiable if sufficiently large training set can rule out all but one setting of

model parameters
• Model with latent variables are often not identifiable as exchanging of two variables does

not change the model
• m layers with n unit each can result in (n!)m arrangements
• This non-identifiability is known as weight space symmetry

• Neural network has other non-identifiability scenario
• ReLU or MaxOut — weight is scaled by α and output is scaled by 1

α
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Local minima (contd.)
• Model identifiability issues mean that there can be uncountably infinite number of local

minima
• Non-identifiability results in local minima and are equivalent to each other in cost function
• Local minima can be problematic if they have high cost compared to global minima
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Other issues
• Saddle points

• Gradient is 0 but some have higher and some have lower value around the point
• Hessian matrix has both positive and negative eigen value

• In high dimension local minima are rare, saddle points are common
• For a function f : Rn → R, the expected ratio of number of saddle points to local minima

grows exponentially with n
• Eigenvalue of Hessian matrix

• Cliffs - uses gradient clipping
• Long term dependency - mostly applicable for RNN

• wt = Vdiag(λ)tV−1

• vanishing and exploding gradient
• Inexact gradients — bias in estimation of gradient
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Stochastic gradient descent
• Inputs — Learning rate (ϵk), weight parameters (θ)
• Algorithm for SGD:

while stopping criteria not met
Sample a minibatch {x(1), x(2), . . . , x(m)} with labels {y(i)}

Estimate of gradient ĝ =
1

m

m∑
i=1

∇θL(f(x(i),θ), y(i))

Update parameters θ = θ − ϵkĝ
end while



CS
55

1

18

Convergence
• Gradient can be approximated as ∇J(w) = g + H(w − ŵ)
• In the vicinity of w∗,
∇J(w) =

H(w − w∗) =
∑

i
αiλiui

• We can express the change in weight vector in terms of corresponding changes in coefficients
{αi}
∆w =

∑
i
∆αiui

• Using gradient descent and above expressions,
∆αi = −ηλiαi

• Hence, we can say, αnew
i = (1− ηλi)αold

i ⇒ ατ
i = (1− ηλi)τα

(0)
i
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Stochastic gradient descent
• Learning rate is a crucial parameter
• Learning rate ϵk is used in the kth iteration
• Gradient does not vanishes even when we reach minima as minibatch can introduce noise
• True gradient becomes small and then 0 when batch gradient descent is used
• Sufficient condition on learning rate for convergence of SGD

•
∞∑

k=1

ϵk = ∞,
∞∑

k=1

ϵ2k < ∞

• Common way is to decay the learning rate ϵk = (1− α)ϵ0 + αϵτ with α = k
τ

• Choosing learning rate is an art than science!
• Typically ϵτ is 1% of ϵ0

• SGD usually performs well for most of the cases
• For large task set SGD may converge within the fixed tolerance of final error before it has

processed all training examples
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Momentum
• SGD is the most popular. However, learning may be slow sometime
• Idea is to accelerate learning especially in high curvature, small but consistent gradients
• Accumulates an exponential decaying moving average of past gradients and continue to

move in that direction
• Introduces a parameter v that play the role of velocity

• The velocity is set to an exponentially decaying average of negative gradients
• Update is given by

v = αv − ϵ∇θ

(
1

m

m∑
i=1

L(f(x(i),θ), y(i))
)

• α — hyperparameter, denotes the decay rate



Image source: Deep Learning Book
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Momentum
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SGD with momentum
• Inputs — Learning rate (ϵ), weight parameters (θ), momentum parameter (α), initial

velocity (v)
• Algorithm:

while stopping criteria not met
Sample a minibatch from set {x(1), x(2), . . . , x(m)} with labels {y(i)}

Estimate of gradient: g =
1

m

m∑
i=1

∇θL(f(x(i),θ), y(i))

Update of velocity: v = αv − ϵg
Update parameters: θ = θ + v

end while
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Momentum
• The step size depends on how large and how aligned a sequence gradients are
• Largest when many successive gradients are in same direction

• If it observes g always, then it will accelerate in −g with terminal velocity ϵ|g|
1− α

• Typical values for α is 0.5, 0.9, 0.99. However this parameter can be adapted.
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Nesternov momentum
• Inputs — Learning rate (ϵ), weight parameters (θ), momentum parameter (α), initial

velocity (v)
• Algorithm:

while stopping criteria not met
Sample a minibatch from set {x(1), x(2), . . . , x(m)} with labels {y(i)}
Interim update: θ̃ = θ + αv
Gradient at interim point: g = 1

m
∑m

i=1∇θL(f(x(i), θ̃), y(i))
Update of velocity: v = αv − ϵg
Update parameters: θ = θ + v

end while
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Parameter initialization
• Training algorithms are iterative in nature
• Require to specify initial point
• Training deep model is difficult task and affected by initial choice

• Convergence
• Computation time
• Numerical instability

• Need to break symmetry while initializing the parameters
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Adaptive learning rate
• Learning rate can affect the performance of the model
• Cost may be sensitive in one direction and insensitive in the other directions
• If partial derivative of loss with respect to model remains the same sign then the learning

rate should decrease
• Applicable for full batch optimization
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AdaGrad
• Adapts the learning rate of all parameters by scaling them inversely proportional to the square

root of the sum of all historical squared values of the gradient
• Parameters with largest partial derivative of the loss will have rapid decrease in learning

rate and vice-versa
• Net effect is greater progress

• It performs well on some models
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Steps for AdaGrad
• Inputs — Global learning rate (ϵ), weight parameters (θ), small constant (δ), gradient

accumulation (r)
• Algorithm:

while stopping criteria not met
Sample a minibatch from set {x(1), x(2), . . . , x(m)} with labels {y(i)}
Gradient: g = 1

m
∑m

i=1∇θL(f(x(i),θ), y(i))
Accumulated squared gradient: r = r + g ⊙ g
Update: ∆θ = − ϵ

δ+
√r ⊙ g

Apply update: θ = θ +∆θ

end while
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RMSProp
• Gradient is accumulated using an exponentially weighted moving average

• Usually, AdaGrad converges rapidly in case of convex function
• AdaGrad reduces the learning rate based on entire history

• RMSProp tries to discard history from extreme past
• This can be combined with momentum
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Steps for RMSProp
• Inputs — Global learning rate (ϵ), weight parameters (θ), small constant (δ), gradient

accumulation (r), decay rate (ρ)
• Algorithm:

while stopping criteria not met
Sample a minibatch from set {x(1), x(2), . . . , x(m)} with labels {y(i)}
Gradient: g = 1

m
∑m

i=1∇θL(f(x(i),θ), y(i))
Accumulated squared gradient: r = ρr + (1− ρ)g ⊙ g
Update: ∆θ = − ϵ√

δ+r ⊙ g
Apply update: θ = θ +∆θ

end while
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Steps for RMSProp with Nesternov
• Inputs — Global learning rate (ϵ), weight parameters (θ), small constant (δ), gradient accu-

mulation (r), decay rate (ρ), initial velocity (v), momentum coefficient (α)
• Algorithm:

while stopping criteria not met
Sample a minibatch from set {x(1), x(2), . . . , x(m)} with labels {y(i)}
Interim update: θ̃ = θ + αv
Gradient: g = 1

m
∑m

i=1∇θL(f(x(i), θ̃), y(i))
Accumulated squared gradient: r = ρr + (1− ρ)g ⊙ g
Update of velocity: v = αv − ϵ√r ⊙ g
Apply update: θ = θ + v

end while
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Approximate 2nd order method
• Taking 2nd order term to train deep neural network
• The cost function at θ near the point θ0 is given by

J(θ) ≈ J(θ0) + (θ − θ0)
T∇θJ(θ0) +

1

2
(θ − θ0)

TH(θ − θ0)

• Solution for critical point provides θ∗ = θ0 − H−1∇θJ(θ0)
• If the function is quadratic then it jumps to minimum
• If the surface is not quadratic but H is positive definite then this approach is also

applicable
• This approach is known as Newton’s method
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Steps for Newton’s method
• Inputs — Initial parameters (θ0)
• Algorithm:

while stopping criteria not met
Sample a minibatch from set {x(1), x(2), . . . , x(m)} with labels {y(i)}
Compute gradient: g = 1

m
∑m

i=1∇θL(f(x(i),θ), y(i))
Compute Hessian: H = 1

m
∑m

i=1∇2
θL(f(x(i),θ), y(i))

Compute inverse Hessian: H−1

Compute update: ∆θ = −H−1g
Apply update: θ = θ +∆θ

end while
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Batch normalization
• Reduces internal covariate shift
• Issues with deep neural network

• Vanishing gradients
• Use smaller learning rate
• Use proper initialization
• Use ReLU or MaxOut which does not saturate

• This approach provides inputs that has zero mean and unit variance to every layer of input
in neural network



Reference: Batch normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, S Ioffe, C Szegedy, 2015
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Batch normalization transformation
• Applying to activation x over a mini-batch
• Input — values of x over a minibatch B = {x1...m}, parameters to be learned — γ, β

• Output — {yi = BNγ,β(xi)}

• Minibatch mean: µB =
1

m

m∑
i=1

xi

• Minibatch variance: σ2
B =

1

m

m∑
i=1

(xi − µB)
2

• Normalize: x̂i =
xi − µB√
σ2
B + ϵ

• Scale and shift: yi = γx̂i + β ≡ BNγ,β(xi)
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Training & inference using batch-norm
• Input — Network N with trainable parameters θ, subset of activations {x(k)}K

k=1, Output —
Batch-normalized network for inference Ninf

BN
• Steps:

• Training BN network: Ntr
BN = N

• for k = 1, . . . ,K
• Add transformation y(k) = BNγ(k),β(k)(x(k)) to Ntr

BN = N
• Modify each layer in Ntr

BN = N with input x(k) to take y(k) instead
• Train Ntr

BN and optimize θ ∪ {γ(k), β(k)}K
k=1

• Ninf
BN = Ntr

BN
• for k = 1, . . . ,K

• Process multiple training minibatches and determine E[x] = EB[µB] and V[x] =
m

m−1EB[σ
2
B]

• In Ninf
BN replace the transform y = BNγ,β(x) with y = γ√

V[x]+ϵ
x + (β − γE[x]√

V[x]+ϵ
)
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Exercise
• Consider the function f(x, y) = 1

2(x2+by2) where 0 < b ≤ 1. We apply gradient descent with
exact line search method. Here the step size (α) is computed as follows α = arg minα f(x −
α∇xf(x)). Let us assume that we start from (x0, y0) = (b, 1). Find the value of (xk, yk). Can
you find any interesting property of two consecutive gradients?


