CS551: Introduction to Deep Learning

Optimization

Arijit Mondal
Dept. of Computer Science \& Engineering Indian Institute of Technology Patna arijit@iitp.ac.in

Minimization of cost function

Approximate minimization

x

[^0]
Curvature

Problem of optimization

- Differs from traditional pure optimization problem
- Performance of a task is optimized indirectly
- We optimize $J(\boldsymbol{\theta})=\mathbb{E}_{(x, y) \sim \hat{p}_{\text {data }}} L(f(x, \boldsymbol{\theta}), y)$ where \hat{p} is the empirical distribution
- We would like to optimize $J^{*}(\boldsymbol{\theta})=\mathbb{E}_{(x, y) \sim p_{\text {data }}} L(f(x, \boldsymbol{\theta}), y)$ where p is the data generating distribution
- Also known as risk
- We hope minimizing J will minimize J^{*}

Empirical risk minimization

- Target is to reduce risk
- If the true distribution is known, risk minimization is an optimization problem
- When $p_{\text {data }}(x, y)$ is unknown, it becomes machine learning problem
- Simplest way to convert machine learning problem to optimization problem is to minimize expected cost of training set
- We minimize empirical risk

$$
\mathbb{E}_{(x, y) \sim \hat{p}_{\text {data }}}[L(f(x, \boldsymbol{\theta}), y)]=\frac{1}{m} \sum_{i} L\left(f\left(x^{(i)}, \boldsymbol{\theta}\right), y^{(i)}\right)
$$

- We can hope empirical risk minimizes the risk as well
- Empirical risk minimization is prone to overfitting
- Gradient based solution approach may lead to problem with 0-1 loss cost function

Surrogate loss function

- Loss function may not be optimized efficiently
- Exact minimization of 0-1 loss is typically intractable
- Surrogate loss function is used
- Proxy function for the actual loss function
- Negative log likelihood of correct class used as surrogate function
- There are cases when surrogate loss function results in better learning
- 0-1 loss of test set often continues to decrease for a long time after training set 0-1 loss has reached to 0
- A training algorithm does not halt at local minima usually
- Tries to minimize surrogate loss function but halts when validation loss starts to increase
- Training function can halt when surrogate function has huge derivative

Batch

- Objective function usually decomposes as a sum over training example
- Typically in machine learning update of parameters is done based on an expected value of the cost function estimated using only a subset of the terms of full cost function
- Maximum likelihood problem $\boldsymbol{\theta}_{M L}=\arg \max _{\boldsymbol{\theta}} \sum_{i=1}^{m} \log p_{\text {model }}\left(x^{(i)}, y^{(i)}, \boldsymbol{\theta}\right)$
- Maximizing this sum is equivalent to maximizing the expectation over empirical distribution $J(\boldsymbol{\theta})=\mathbb{E}_{(\mathrm{x}, y) \sim \hat{p}_{\text {data }}} \log p_{\text {model }}(\mathrm{x}, y, \boldsymbol{\theta})$

Batch (contd.)

- Common gradient is given by $\nabla_{\boldsymbol{\theta}}=\mathbb{E}_{(\mathrm{x}, \mathrm{y}) \sim \hat{p}_{\text {data }}} \nabla_{\boldsymbol{\theta}} \log p_{\text {model }}(\mathrm{x}, y, \boldsymbol{\theta})$
- It becomes expensive as we need to compute for all examples
- Random sample is chosen, then average of the same is taken
- Standard error in mean is $\frac{\sigma}{\sqrt{n}}$ where σ is the true standard deviation
- Redundancy in training examples is an issue
- Optimization algorithm that uses entire training set is called batch of deterministic gradient descent
- Optimization algorithm that uses single example at a time is known as stochastic gradient descent or online method

Minibatch

- Larger batch provides more accurate estimate of the gradient but with lesser than linear returns
- Multicore architecture are usually underutilized by small batches
- If all examples are to be processed parallely then the amount of memory scales with batch size
- Sometime, better run time is observed with specific size of the array
- Small batch can add regularization effect due to noise they add in learning process
- Methods that update the parameters based on g only are usually robust and can handle small batch size ~ 100
- With Hessian matrix batch size becomes $\sim 10,000$ (Require to minimize $\mathrm{H}^{-1} \mathrm{~g}$)
- SGD minimizes generalization error on minibatches drawn from a stream of data

Local quadratic approximation

- Taylor expansion of J(w) around \hat{w} in weight space is given by

$$
J(w)=J(\hat{w})+(w-\hat{w})^{\top} g+\frac{1}{2}(w-\hat{w})^{\top} H(w-\hat{w})
$$

where $\mathrm{g}=\left.\nabla J(\mathrm{w})\right|_{\mathrm{w}=\hat{\mathrm{w}}}$ and $H=\left.\nabla \nabla J(\mathrm{w})\right|_{\mathrm{w}=\hat{\mathrm{w}}}$

Local quadratic approximation

- Taylor expansion of J(w) around \hat{w} in weight space is given by

$$
J(w)=J(\hat{w})+(w-\hat{w})^{\top} g+\frac{1}{2}(w-\hat{w})^{\top} H(w-\hat{w})
$$

where $g=\left.\nabla J(w)\right|_{w=\hat{w}}$ and $H=\left.\nabla \nabla J(w)\right|_{w=\hat{w}}$

- Gradient can be approximated as

Local quadratic approximation

- Taylor expansion of J(w) around \hat{w} in weight space is given by

$$
J(w)=J(\hat{w})+(w-\hat{w})^{\top} g+\frac{1}{2}(w-\hat{w})^{\top} H(w-\hat{w})
$$

where $g=\left.\nabla J(w)\right|_{w=\hat{w}}$ and $H=\left.\nabla \nabla J(w)\right|_{w=\hat{w}}$

- Gradient can be approximated as $\nabla J(w)=g+H(w-\hat{w})$

Local quadratic approximation

- Taylor expansion of J(w) around \hat{w} in weight space is given by

$$
J(w)=J(\hat{w})+(w-\hat{w})^{\top} g+\frac{1}{2}(w-\hat{w})^{\top} H(w-\hat{w})
$$

where $g=\left.\nabla J(w)\right|_{w=\hat{w}}$ and $H=\left.\nabla \nabla J(w)\right|_{w=\hat{w}}$

- Gradient can be approximated as $\nabla J(w)=g+H(w-\hat{w})$
- In case w^{*} is a minimum point, then the expansion can be written as $J(w)=J\left(w^{*}\right)+\frac{1}{2}\left(w-w^{*}\right)^{\top} H\left(w-w^{*}\right), H$ needs to be evaluated at w^{*}
- Consider the eigenvalue equation for the Hessian matrix ie. $H \mathrm{u}_{i}=\lambda_{i} \mathrm{u}_{i}$

Local quadratic approximation

- Taylor expansion of J(w) around \hat{w} in weight space is given by

$$
\begin{aligned}
& J(\mathrm{w})=J(\hat{\mathrm{w}})+(\mathrm{w}-\hat{\mathrm{w}})^{\top} \mathrm{g}+\frac{1}{2}(\mathrm{w}-\hat{\mathrm{w}})^{\top} H(\mathrm{w}-\hat{\mathrm{w}}) \\
& \text { where } \mathrm{g}=\left.\nabla J(\mathrm{w})\right|_{\mathrm{w}=\hat{\mathrm{w}}} \text { and } H=\left.\nabla \nabla J(\mathrm{w})\right|_{\mathrm{w}=\hat{\mathrm{w}}}
\end{aligned}
$$

- Gradient can be approximated as $\nabla J(w)=g+H(w-\hat{w})$
- In case w^{*} is a minimum point, then the expansion can be written as $J(w)=J\left(w^{*}\right)+\frac{1}{2}\left(w-w^{*}\right)^{\top} H\left(w-w^{*}\right), H$ needs to be evaluated at w^{*}
- Consider the eigenvalue equation for the Hessian matrix ie. $H \mathrm{u}_{i}=\lambda_{i} \mathrm{u}_{i}$
- The eigenvectors u_{i} form a complete orthonormal set so that $\mathrm{u}_{i} \mathrm{u}_{j}=0$ when $i \neq j$ and 1 when $i=j$

Local quadratic approximation

- Taylor expansion of J(w) around \hat{w} in weight space is given by

$$
\begin{aligned}
& J(\mathrm{w})=J(\hat{\mathrm{w}})+(\mathrm{w}-\hat{\mathrm{w}})^{\top} \mathrm{g}+\frac{1}{2}(\mathrm{w}-\hat{\mathrm{w}})^{\top} H(\mathrm{w}-\hat{\mathrm{w}}) \\
& \text { where } \mathrm{g}=\left.\nabla J(\mathrm{w})\right|_{\mathrm{w}=\hat{\mathrm{w}}} \text { and } H=\left.\nabla \nabla J(\mathrm{w})\right|_{\mathrm{w}=\hat{\mathrm{w}}}
\end{aligned}
$$

- Gradient can be approximated as $\nabla J(w)=g+H(w-\hat{w})$
- In case w^{*} is a minimum point, then the expansion can be written as $J(w)=J\left(w^{*}\right)+\frac{1}{2}\left(w-w^{*}\right)^{\top} H\left(w-w^{*}\right), H$ needs to be evaluated at w^{*}
- Consider the eigenvalue equation for the Hessian matrix ie. $H \mathrm{u}_{i}=\lambda_{i} \mathrm{u}_{i}$
- The eigenvectors u_{i} form a complete orthonormal set so that $\mathrm{u}_{i} \mathrm{u}_{j}=0$ when $i \neq j$ and 1 when $i=j$
- Treating eigenvectors as basis, we can write $w-w^{*}=\sum_{i} \alpha_{i} u_{i}$. Now we have

Local quadratic approximation

- Taylor expansion of J(w) around \hat{w} in weight space is given by

$$
\begin{aligned}
& J(\mathrm{w})=J(\hat{\mathrm{w}})+(\mathrm{w}-\hat{\mathrm{w}})^{\top} \mathrm{g}+\frac{1}{2}(\mathrm{w}-\hat{\mathrm{w}})^{\top} H(\mathrm{w}-\hat{\mathrm{w}}) \\
& \text { where } \mathrm{g}=\left.\nabla J(\mathrm{w})\right|_{\mathrm{w}=\hat{\mathrm{w}}} \text { and } H=\left.\nabla \nabla J(\mathrm{w})\right|_{\mathrm{w}=\hat{\mathrm{w}}}
\end{aligned}
$$

- Gradient can be approximated as $\nabla J(w)=g+H(w-\hat{w})$
- In case w^{*} is a minimum point, then the expansion can be written as $J(w)=J\left(w^{*}\right)+\frac{1}{2}\left(w-w^{*}\right)^{\top} H\left(w-w^{*}\right), H$ needs to be evaluated at w^{*}
- Consider the eigenvalue equation for the Hessian matrix ie. $H \mathrm{u}_{i}=\lambda_{i} \mathrm{u}_{i}$
- The eigenvectors u_{i} form a complete orthonormal set so that $\mathrm{u}_{i} \mathrm{u}_{j}=0$ when $i \neq j$ and 1 when $i=j$
- Treating eigenvectors as basis, we can write $\mathrm{w}-\mathrm{w}^{*}=\sum_{i} \alpha_{i} \mathrm{u}_{i}$. Now we have $J(\mathrm{w})=J\left(\mathrm{w}^{*}\right)+\frac{1}{2} \sum_{i} \lambda_{i} \alpha_{i}^{2}$

Issues in optimization

- III conditioning
- Local minima
- Plateaus
- Saddle points
- Flat region
- Cliffs
- Exploding gradients
- Vanishing gradients
- Long term dependencies
- Inexact gradients

Ill conditioning

- III conditioning of Hessian matrix
- Common problem in most of the numerical optimization
- The ratio of smallest to largest eigen value determines the condition number
- We have the following

$$
\begin{aligned}
f(x) & =f\left(x^{(0)}\right)+\left(x-x^{(0)}\right)^{T} g+\frac{1}{2}\left(x-x^{(0)}\right)^{T} H\left(x-x^{(0)}\right) \\
f(x-\epsilon g) & =f\left(x^{(0)}\right)-\epsilon g^{T} g+\frac{1}{2} \epsilon g^{T} H \epsilon g
\end{aligned}
$$

- It becomes a problem when $\frac{1}{2} \epsilon^{2} \mathrm{~g}^{T} \mathrm{Hg}-\epsilon \mathrm{g}^{T} \mathrm{~g}>0$
- In many cases gradient norm does not shrink much during learning and $\mathrm{g}^{\top} \mathrm{Hg}$ grows more rapidly
- Makes the learning process slow

Local minima

- For convex optimization problem local minima is often acceptable
- For nonconvex function like neural network many local minima are possible
- This is not a major problem

Local minima (contd.)

- Neural network and any models with multiple equivalently parameterized latent variables results in local minima
- This is due to model identifiability
- Model is identifiable if sufficiently large training set can rule out all but one setting of model parameters
- Model with latent variables are often not identifiable as exchanging of two variables does not change the model
- m layers with n unit each can result in ($n!)^{m}$ arrangements
- This non-identifiability is known as weight space symmetry
- Neural network has other non-identifiability scenario
- ReLU or MaxOut - weight is scaled by α and output is scaled by $\frac{1}{\alpha}$

Local minima (contd.)

- Model identifiability issues mean that there can be uncountably infinite number of local minima
- Non-identifiability results in local minima and are equivalent to each other in cost function
- Local minima can be problematic if they have high cost compared to global minima

Other issues

- Saddle points
- Gradient is 0 but some have higher and some have lower value around the point
- Hessian matrix has both positive and negative eigen value
- In high dimension local minima are rare, saddle points are common
- For a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, the expected ratio of number of saddle points to local minima grows exponentially with n
- Eigenvalue of Hessian matrix
- Cliffs - uses gradient clipping
- Long term dependency - mostly applicable for RNN
- $\mathrm{w}^{t}=\mathrm{V} \operatorname{diag}(\boldsymbol{\lambda})^{t} \mathrm{~V}^{-1}$
- vanishing and exploding gradient
- Inexact gradients - bias in estimation of gradient

Stochastic gradient descent

- Inputs - Learning rate $\left(\epsilon_{k}\right)$, weight parameters (θ)
- Algorithm for SGD:
while stopping criteria not met
Sample a minibatch $\left\{\mathrm{x}^{(1)}, \mathrm{x}^{(2)}, \ldots, \mathrm{x}^{(m)}\right\}$ with labels $\left\{\mathrm{y}^{(i)}\right\}$
Estimate of gradient $\hat{g}=\frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L\left(f\left(x^{(i)}, \boldsymbol{\theta}\right), y^{(i)}\right)$
Update parameters $\theta=\theta-\epsilon_{k} \hat{g}$

end while

Convergence

- Gradient can be approximated as $\nabla J(\mathrm{w})=\mathrm{g}+H(\mathrm{w}-\hat{\mathrm{w}})$
- In the vicinity of w^{*},

$$
\nabla J(\mathrm{w})=
$$

Convergence

- Gradient can be approximated as $\nabla J(\mathrm{w})=\mathrm{g}+H(\mathrm{w}-\hat{\mathrm{w}})$
- In the vicinity of w^{*},

$$
\nabla J(w)=H\left(w-w^{*}\right)=
$$

Convergence

- Gradient can be approximated as $\nabla J(w)=\mathrm{g}+H(\mathrm{w}-\hat{\mathrm{w}})$
- In the vicinity of w^{*},

$$
\nabla J(\mathrm{w})=H\left(\mathrm{w}-\mathrm{w}^{*}\right)=\sum_{i} \alpha_{i} \lambda_{i} \mathrm{u}_{i}
$$

Convergence

- Gradient can be approximated as $\nabla J(w)=g+H(w-\hat{w})$
- In the vicinity of w^{*},

$$
\nabla J(\mathrm{w})=H\left(\mathrm{w}-\mathrm{w}^{*}\right)=\sum_{i} \alpha_{i} \lambda_{i} \mathrm{u}_{i}
$$

- We can express the change in weight vector in terms of corresponding changes in coefficients $\left\{\alpha_{i}\right\}$

$$
\Delta \mathrm{w}=\sum_{i} \Delta \alpha_{i} \mathrm{u}_{i}
$$

Convergence

- Gradient can be approximated as $\nabla J(w)=g+H(w-\hat{w})$
- In the vicinity of w^{*},

$$
\nabla J(w)=H\left(w-w^{*}\right)=\sum_{i} \alpha_{i} \lambda_{i} u_{i}
$$

- We can express the change in weight vector in terms of corresponding changes in coefficients $\left\{\alpha_{i}\right\}$

$$
\Delta \mathrm{w}=\sum_{i} \Delta \alpha_{i} \mathrm{u}_{i}
$$

- Using gradient descent and above expressions,
$\Delta \alpha_{i}=-\eta \lambda_{i} \alpha_{i}$

Convergence

- Gradient can be approximated as $\nabla J(w)=g+H(w-\hat{w})$
- In the vicinity of w^{*},

$$
\nabla J(\mathrm{w})=H\left(\mathrm{w}-\mathrm{w}^{*}\right)=\sum_{i} \alpha_{i} \lambda_{i} \mathrm{u}_{i}
$$

- We can express the change in weight vector in terms of corresponding changes in coefficients $\left\{\alpha_{i}\right\}$

$$
\Delta \mathrm{w}=\sum_{i} \Delta \alpha_{i} \mathrm{u}_{i}
$$

- Using gradient descent and above expressions,
$\Delta \alpha_{i}=-\eta \lambda_{i} \alpha_{i}$
- Hence, we can say, $\alpha_{i}^{\text {new }}=\left(1-\eta \lambda_{i}\right) \alpha_{i}^{\text {old }} \Rightarrow \alpha_{i}^{\tau}=\left(1-\eta \lambda_{i}\right)^{\tau} \alpha_{i}^{(0)}$

Stochastic gradient descent

- Learning rate is a crucial parameter
- Learning rate ϵ_{k} is used in the k th iteration
- Gradient does not vanishes even when we reach minima as minibatch can introduce noise
- True gradient becomes small and then 0 when batch gradient descent is used
- Sufficient condition on learning rate for convergence of SGD
- $\sum_{k=1}^{\infty} \epsilon_{k}=\infty, \sum_{k=1}^{\infty} \epsilon_{k}^{2}<\infty$
- Common way is to decay the learning rate $\epsilon_{k}=(1-\alpha) \epsilon_{0}+\alpha \epsilon_{\tau}$ with $\alpha=\frac{k}{\tau}$
- Choosing learning rate is an art than science!
- Typically ϵ_{τ} is 1% of ϵ_{0}
- SGD usually performs well for most of the cases
- For large task set SGD may converge within the fixed tolerance of final error before it has processed all training examples

Momentum

- SGD is the most popular. However, learning may be slow sometime
- Idea is to accelerate learning especially in high curvature, small but consistent gradients
- Accumulates an exponential decaying moving average of past gradients and continue to move in that direction
- Introduces a parameter v that play the role of velocity
- The velocity is set to an exponentially decaying average of negative gradients
- Update is given by

$$
\mathrm{v}=\alpha \mathrm{v}-\epsilon \nabla_{\boldsymbol{\theta}}\left(\frac{1}{m} \sum_{i=1}^{m} L\left(f\left(\mathrm{x}^{(i)}, \boldsymbol{\theta}\right), y^{(i)}\right)\right)
$$

- α - hyperparameter, denotes the decay rate

SGD with momentum

- Inputs - Learning rate (ϵ), weight parameters (θ), momentum parameter (α), initial velocity (v)
- Algorithm:
while stopping criteria not met
Sample a minibatch from set $\left\{\mathrm{x}^{(1)}, \mathrm{x}^{(2)}, \ldots, \mathrm{x}^{(m)}\right\}$ with labels $\left\{\mathrm{y}^{(i)}\right\}$
Estimate of gradient: $\mathrm{g}=\frac{1}{m} \sum_{i=1}^{m} \nabla_{\boldsymbol{\theta}} L\left(f\left(\mathrm{x}^{(i)}, \boldsymbol{\theta}\right), y^{(i)}\right)$
Update of velocity: $\mathrm{v}=\alpha \mathrm{v}-\epsilon \mathrm{g}$
Update parameters: $\boldsymbol{\theta}=\boldsymbol{\theta}+\mathrm{v}$
end while

Momentum

- The step size depends on how large and how aligned a sequence gradients are
- Largest when many successive gradients are in same direction
- If it observes g always, then it will accelerate in -g with terminal velocity $\frac{\epsilon|\mathrm{g}|}{1-\alpha}$
- Typical values for α is $0.5,0.9,0.99$. However this parameter can be adapted.

Nesternov momentum

- Inputs - Learning rate (ϵ), weight parameters (θ), momentum parameter (α), initial velocity (v)
- Algorithm:
while stopping criteria not met
Sample a minibatch from set $\left\{\mathrm{x}^{(1)}, \mathrm{x}^{(2)}, \ldots, \mathrm{x}^{(m)}\right\}$ with labels $\left\{\mathrm{y}^{(i)}\right\}$
Interim update: $\tilde{\boldsymbol{\theta}}=\boldsymbol{\theta}+\alpha \mathrm{v}$
Gradient at interim point: $\mathrm{g}=\frac{1}{m} \sum_{i=1}^{m} \nabla_{\boldsymbol{\theta}} L\left(f\left(\mathrm{x}^{(i)}, \tilde{\boldsymbol{\theta}}\right), y^{(i)}\right)$
Update of velocity: $\mathrm{v}=\alpha \mathrm{v}-\epsilon \mathrm{g}$
Update parameters: $\theta=\theta+v$
end while

Parameter initialization

- Training algorithms are iterative in nature
- Require to specify initial point
- Training deep model is difficult task and affected by initial choice
- Convergence
- Computation time
- Numerical instability
- Need to break symmetry while initializing the parameters

Adaptive learning rate

- Learning rate can affect the performance of the model
- Cost may be sensitive in one direction and insensitive in the other directions
- If partial derivative of loss with respect to model remains the same sign then the learning rate should decrease
- Applicable for full batch optimization

AdaGrad

- Adapts the learning rate of all parameters by scaling them inversely proportional to the square root of the sum of all historical squared values of the gradient
- Parameters with largest partial derivative of the loss will have rapid decrease in learning rate and vice-versa
- Net effect is greater progress
- It performs well on some models

Steps for AdaGrad

- Inputs - Global learning rate (ϵ), weight parameters (θ), small constant (δ), gradient accumulation (r)
- Algorithm:
while stopping criteria not met
Sample a minibatch from set $\left\{\mathrm{x}^{(1)}, \mathrm{x}^{(2)}, \ldots, \mathrm{x}^{(m)}\right\}$ with labels $\left\{\mathrm{y}^{(i)}\right\}$
Gradient: $\mathrm{g}=\frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L\left(f\left(x^{(i)}, \boldsymbol{\theta}\right), y^{(i)}\right)$
Accumulated squared gradient: $\mathrm{r}=\mathrm{r}+\mathrm{g} \odot \mathrm{g}$
Update: $\Delta \boldsymbol{\theta}=-\frac{\epsilon}{\delta+\sqrt{\mathrm{r}}} \odot \mathrm{g}$
Apply update: $\boldsymbol{\theta}=\boldsymbol{\theta}+\Delta \boldsymbol{\theta}$
end while

RMSProp

- Gradient is accumulated using an exponentially weighted moving average
- Usually, AdaGrad converges rapidly in case of convex function
- AdaGrad reduces the learning rate based on entire history
- RMSProp tries to discard history from extreme past
- This can be combined with momentum

Steps for RMSProp

- Inputs - Global learning rate (ϵ), weight parameters (θ), small constant (δ), gradient accumulation (r), decay rate (ρ)
- Algorithm:
while stopping criteria not met
Sample a minibatch from set $\left\{\mathrm{x}^{(1)}, \mathrm{x}^{(2)}, \ldots, \mathrm{x}^{(m)}\right\}$ with labels $\left\{\mathrm{y}^{(i)}\right\}$
Gradient: $\mathrm{g}=\frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L\left(f\left(x^{(i)}, \boldsymbol{\theta}\right), y^{(i)}\right)$
Accumulated squared gradient: $\mathrm{r}=\rho \mathrm{r}+(1-\rho) \mathrm{g} \odot \mathrm{g}$
Update: $\Delta \boldsymbol{\theta}=-\frac{\epsilon}{\sqrt{\delta+\mathrm{r}}} \odot \mathrm{g}$
Apply update: $\boldsymbol{\theta}=\boldsymbol{\theta}+\Delta \boldsymbol{\theta}$
end while

Steps for RMSProp with Nesternov

- Inputs - Global learning rate (ϵ), weight parameters (θ), small constant (δ), gradient accumulation (r), decay rate (ρ), initial velocity (v), momentum coefficient (α)
- Algorithm:
while stopping criteria not met
Sample a minibatch from set $\left\{\mathrm{x}^{(1)}, \mathrm{x}^{(2)}, \ldots, \mathrm{x}^{(m)}\right\}$ with labels $\left\{\mathrm{y}^{(i)}\right\}$
Interim update: $\tilde{\boldsymbol{\theta}}=\boldsymbol{\theta}+\alpha v$
Gradient: $\mathrm{g}=\frac{1}{m} \sum_{i=1}^{m} \nabla_{\boldsymbol{\theta}} L\left(f\left(x^{(i)}, \tilde{\boldsymbol{\theta}}\right), y^{(i)}\right)$
Accumulated squared gradient: $r=\rho r+(1-\rho) g \odot g$
Update of velocity: $\mathrm{v}=\alpha \mathrm{v}-\frac{\epsilon}{\sqrt{\mathrm{r}}} \odot \mathrm{g}$
Apply update: $\boldsymbol{\theta}=\boldsymbol{\theta}+\mathrm{v}$

end while

Approximate 2nd order method

- Taking 2nd order term to train deep neural network
- The cost function at θ near the point θ_{0} is given by

$$
J(\boldsymbol{\theta}) \approx J\left(\boldsymbol{\theta}_{0}\right)+\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)^{T} \nabla_{\boldsymbol{\theta}} J\left(\boldsymbol{\theta}_{0}\right)+\frac{1}{2}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)^{T} \mathrm{H}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)
$$

- Solution for critical point provides $\theta^{*}=\theta_{0}-\mathrm{H}^{-1} \nabla_{\theta} J\left(\theta_{0}\right)$
- If the function is quadratic then it jumps to minimum
- If the surface is not quadratic but H is positive definite then this approach is also applicable
- This approach is known as Newton's method

Steps for Newton's method

- Inputs - Initial parameters $\left(\theta_{0}\right)$
- Algorithm:
while stopping criteria not met
Sample a minibatch from set $\left\{\mathrm{x}^{(1)}, \mathrm{x}^{(2)}, \ldots, \mathrm{x}^{(m)}\right\}$ with labels $\left\{\mathrm{y}^{(i)}\right\}$
Compute gradient: $\mathrm{g}=\frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L\left(f\left(\mathrm{x}^{(i)}, \boldsymbol{\theta}\right), y^{(i)}\right)$
Compute Hessian: $\mathrm{H}=\frac{1}{m} \sum_{i=1}^{m} \nabla_{\boldsymbol{\theta}}^{2} L\left(f\left(\mathrm{x}^{(i)}, \boldsymbol{\theta}\right), y^{(i)}\right)$
Compute inverse Hessian: H^{-1}
Compute update: $\Delta \boldsymbol{\theta}=-\mathrm{H}^{-1} \mathrm{~g}$
Apply update: $\boldsymbol{\theta}=\boldsymbol{\theta}+\Delta \boldsymbol{\theta}$
end while

Batch normalization

- Reduces internal covariate shift
- Issues with deep neural network
- Vanishing gradients
- Use smaller learning rate
- Use proper initialization
- Use ReLU or MaxOut which does not saturate
- This approach provides inputs that has zero mean and unit variance to every layer of input in neural network

Batch normalization transformation

- Applying to activation x over a mini-batch
- Input - values of x over a minibatch $\mathcal{B}=\left\{x_{1 \ldots m}\right\}$, parameters to be learned - γ, β
- Output - $\left\{y_{i}=\mathrm{BN}_{\gamma, \beta}\left(x_{i}\right)\right\}$
- Minibatch mean: $\mu_{\mathcal{B}}=\frac{1}{m} \sum_{i=1}^{m} x_{i}$
- Minibatch variance: $\sigma_{\mathcal{B}}^{2}=\frac{1}{m} \sum_{i=1}^{m}\left(x_{i}-\mu_{\mathcal{B}}\right)^{2}$
- Normalize: $\hat{x}_{i}=\frac{x_{i}-\mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^{2}+\epsilon}}$
- Scale and shift: $y_{i}=\gamma \hat{x}_{i}+\beta \equiv \operatorname{BN}_{\gamma, \beta}\left(x_{i}\right)$

Training \& inference using batch-norm

- Input - Network N with trainable parameters θ, subset of activations $\left\{x^{(k)}\right\}_{k=1}^{K}$, Output -Batch-normalized network for inference $N_{\text {BN }}^{\mathrm{inf}}$
- Steps:
- Training BN network: $N_{\mathrm{BN}}^{\mathrm{tr}}=N$
- for $k=1, \ldots, K$
- Add transformation $y^{(k)}=\mathrm{BN}_{\gamma^{(k)}, \beta^{(k)}}\left(x^{(k)}\right)$ to $N_{\mathrm{BN}}^{\mathrm{tr}}=N$
- Modify each layer in $N_{\mathrm{BN}}^{\mathrm{tr}}=N$ with input $x^{(k)}$ to take $y^{(k)}$ instead
- Train $N_{\mathrm{BN}}^{\mathrm{tr}}$ and optimize $\boldsymbol{\theta} \cup\left\{\gamma^{(k)}, \beta^{(k)}\right\}_{k=1}^{K}$
- $N_{\mathrm{BN}}^{\mathrm{inf}}=N_{\mathrm{BN}}^{\mathrm{tr}}$
- for $k=1, \ldots, K$
- Process multiple training minibatches and determine $\mathbb{E}[x]=\mathbb{E}_{\mathcal{B}}\left[\mu_{\mathcal{B}}\right]$ and $V[x]=$ $\frac{m}{m-1} \mathbb{E}_{\mathcal{B}}\left[\sigma_{\mathcal{B}}^{2}\right]$
- In $N_{\mathrm{BN}}^{\mathrm{inf}}$ replace the transform $y=\mathrm{BN}_{\gamma, \beta}(x)$ with $y=\frac{\gamma}{\sqrt{V[x]+\epsilon}} x+\left(\beta-\frac{\gamma \mathbb{E}[x]}{\sqrt{V[x]+\epsilon}}\right)$

Exercise

- Consider the function $f(x, y)=\frac{1}{2}\left(x^{2}+b y^{2}\right)$ where $0<b \leq 1$. We apply gradient descent with exact line search method. Here the step size (α) is computed as follows $\alpha=\arg \min _{\alpha} f(x-$ $\left.\alpha \nabla_{x} f(x)\right)$. Let us assume that we start from $\left(x_{0}, y_{0}\right)=(b, 1)$. Find the value of $\left(x_{k}, y_{k}\right)$. Can you find any interesting property of two consecutive gradients?

[^0]: Image source: Deep Learning Book

