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Introduction
• Recurrent neural networks are used for processing sequential data in general
• Convolution neural network is specialized for image

• Capable of processing variable length input
• Track long term dependencies
• Need to maintain information about ordering
• Shares parameters across different part of the model
• Examples:
• Example: ”I went to IIT in 2017” or ”In 2017, I went to IIT”
• Example: ”I grew up in Bengal. .... I can speak fluent ___”
• Example: The food was good, not bad at all -vs- The food was bad, not good at all
• For traditional machine learning models require to learn rules for different positions
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Modeling of Natural Language
• Language are the most common sequence models
• Natural language model requires a probability distribution over string
• Terminology
• Bag of Words - a representation of text that describes the occurrence of words within a

document
• TF(x, d) – we count how prevalent each term x is in a single document d
• Words are commonly normalized to lowercase and stemmed by removing their suffixes; com-

mon stopwords (such as a, an, the, etc.) are removed

• IDF(x) = 1 + log
(

total number of documents
number of documents containing x

)
• TFIDF(x, d) = Tf(x, d)× IDF(x) – used for measuring similarity between a query and a

document
• N-grams – A sequence of n adjacent words is called an n-gram
• A bag of words is the 1-gram or unigram model
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RNN: Predict next word
• Word cannot be fed directly
• Words need to be represented as numbers
• Encoding scheme:
• 1-hot encoding: Only one element will be 1, eg, [0, 0, 1, 0, . . .]. Vector size = Vocabulary

size
• Word embedding: Only a set of numbers will be used, eg., [0.87, 0.93, 0.14, . . .]. Vector

size is ≪ Vocabulary size
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Computational graph
• Formal way to represent the computation
• Unfolding the graph results in sharing of parameters
• Consider a system s(t) = f(s(t−1),θ) where s(t) denotes the state of the system
• It is recurrent
• For finite number of steps, it can be unfolded
• Example: s(3) = f(s(2), θ) = f(f(s(1), θ), θ)
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System with inputs
• A system will be represented as s(t) = f(s(t−1), x(t),θ)
• A state contains information of whole past sequence

• Usually state is indicated as hidden units such that h(t) = f(h(t−1), x(t),θ)
• While predicting, network learn h(t) as a kind of lossy summary of past sequence upto t
• h(t) depends on (x(t), x(t−1), . . . , x(1))
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System with inputs (contd.)
• Unfolded recursion after t steps will be h(t) = g(t)(x(t), x(t−1), . . . , x(1)) = f(h(t−1), x(t),θ)
• Unfolding process has some advantages
• Regardless of sequence length, learned model has same input size
• Uses the same transition function f with the same parameters at every time steps

• Can be trained with fewer examples
• Recurrent graph is succinct
• Unfolded graph illustrates the information flow
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Recurrent connection in hidden units
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Output to hidden unit connection
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Sequence processing
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Stacked/Deep RNN
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Recurrent neural network
• Function computable by a Turing machine can be computed by such recurrent network of

finite size
• tanh is usually chosen as activation function for hidden units
• Output can be considered as discrete, so y gives unnormalized log probabilities
• Forward propagation begins with initial state h0
• So we have,
• a(t) = b + Wh(t−1) + Ux(t)
• h(t) = tanh(a(t))
• y(t) = c + Vh(t)
• ŷ(t) = softmax(y(t))

• Input and output have the same length



Image source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Example: char-rnn



Image source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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RNN: William Shakespeare



Image source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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RNN: Maths / Latex-1



Image source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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RNN: Maths / Latex-2



Image source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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RNN: Linux Kernel



Image source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

CS
55
1

19

RNN: Visualization
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RNN: Pros and Cons
• Pros:
• Can process any length input
• Computation for step t can use information from distant past (theoretically)
• Model size does not increase for longer input
• Same weight parameters are shared across the time steps

• Cons:
• Computation is usually slow
• Difficult to access information to distant past
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Loss per time point
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Total loss
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Gradient computation in RNN
• The network will be unfolded and gradient will be back propagated
• Number of stages need to be decided
• Issue in gradient computation
• Vanishing gradients
• Exploding gradients

• Loss function

• lt =
1

2

out∑
k=1

(ok − yk)
2, L =

1

2

τ∑
t=1

out∑
k=1

(otk − ytk)
2

• L = −
τ∑

t=1

out∑
k=1

[ytk ln otk + (1− ytk) ln(1− otk)]

• Truncated backpropagation through time (BPTT)
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Gradients in RNN-1
• Consider a simple situation with following dynamics:

ht = f(xt, ht−1,wh)

ot = g(ht,wo)

• Assume that the loss is computed by unfolding the system for τ units of time

L(x1, . . . , xτ , y1, . . . , yτ ,wh,wo) =
1

τ

τ∑
t=1

l(yt, ot)

• Compute the derivative with respect to wh using chain rule
∂L
∂wh

=
1

τ

τ∑
t=1

∂l(yt, ot)

∂wh
=

1

τ

τ∑
t=1

∂l(yt, ot)

∂ot

∂g(ht,wo)

∂ht

∂ht
∂wh

• Computation of third factor in above, ∂ht
∂wh

, is tricky. It needs to be computed recurrently

∂ht
∂wh

=
∂f(xt, ht−1,wh)

∂wh
+

∂f(xt, ht−1,wh)

∂ht−1

∂ht−1

∂wh
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Gradients in RNN-2
• Above equation is similar to a0 = 0, and at = bt + ctat−1 for t = 1, 2, . . .

• Then for t ≥ 1, at can be expressed in the following form

at = bt +
t−1∑
i=1

 t∏
j=i+1

cj

 bi

• Hence, by substituting at, bt, ct appropriately, we get

∂ht
∂wh

=
∂f(xt, ht−1,wh)

∂wh
+

t−1∑
i=1

 t∏
j=i+1

∂f(xj, hj−1,wh)

∂hj−1

 ∂f(xi, hi−1,wh)

∂wh
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Gradient in matrix form
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Gradient in matrix form
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Backpropagation through time-1
• Consider RNN excluding bias, xt ∈ Rd, ht ∈ Rh, ot ∈ Rq, W ∈ Rh×h, U ∈ Rh×d, V ∈ Rq×h

ht = Wht−1 + Uxt

ot = Vht

• Loss function over a period of τ time units can be computed as

L =
1

τ

τ∑
t=1

l(yt, ot)

• We need to compute ∂L
∂W ,

∂L
∂U ,

∂L
∂V
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Backpropagation through time-2
• Differentiating the loss with respect to model output at any time step t is

∂L
∂ot

=
∂l(ot, yt)

∂ot · τ
∈ Rq

• Calculate the gradient of loss wrt V in output layer
∂L
∂V =

τ∑
t=1

[∏(
∂L
∂ot

,
∂ot
∂V

)]
=

τ∑
t=1

∂L
∂ot

hT
t

• At the final time step τ , L depends on hτ only via oτ . Therefore, the gradient will be
∂L
∂hτ

=

[∏(
∂L
∂oτ

,
∂oτ
∂hτ

)]
= VT ∂L

∂oτ
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Backpropagation through time-3
• For t < τ , L depends on ht via ht+1 and ot. Hence, using chain rule

∂L
∂ht

=

[∏(
∂L

∂ht+1
,
∂ht+1

∂ht

)]
+

[∏(
∂L
∂ot

,
∂ot
∂ht

)]
= WT ∂L

∂ht+1
+ VT ∂L

∂ot

• Expanding the recurrence computation for any time step 1 ≤ t ≤ τ , we get
∂L
∂ht

=
τ∑

i=t

(
WT)τ−i VT ∂L

∂oτ+t−i

• Computing gradient wrt U
∂L
∂U =

τ∑
t=1

[∏(
∂L
∂ht

,
∂ht
∂U

)]
=

τ∑
t=1

∂L
∂ht

xT
t

• Computing gradient wrt W
∂L
∂W =

τ∑
t=1

[∏(
∂L
∂ht

,
∂ht
∂W

)]
=

τ∑
t=1

∂L
∂ht

hT
t−1
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Gradient issues
• Gradient

∂L
∂W

=

τ∑
t=1

∂lt
∂W =

τ∑
t=1

t∑
k=1

∂lt
∂yt

∂yt
∂ht

∂ht
∂hk

∂hk
∂W

• Now we have,
∂ht
∂hk

=

t∏
i=k+1

∂hi
∂hi−1

=

t∏
i=k+1

WTdiag[ϕ′(hi−1)]

• Issues in gradient∥∥∥∥ ∂hi
∂hi−1

∥∥∥∥ ≤ ∥∥WT∥∥ ∥diag[ϕ′(hi−1)]∥ ≤ λWλϕ

∥∥∥∥∂ht
∂hk

∥∥∥∥ ≤ (λWλϕ)
t−k
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Gradient issues
• Gradient
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Gradient issues in RNN
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Issues with Vanilla RNN
• Hard to retain the information in hidden state with successive matrix multiplications
• Hidden states of recurrent networks are inherently short-term
• No mechanism exist for fine grained control of what information to retain from hidden

state
• The LSTM / GRU use analog gates to control the flow of information
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RNN variants
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Gated Recurrent Unit
• An improved version of RNN
• It uses the notion of gating in propagating information
• Similar to Long Short-Term Memory (LSTM)
• Uses less number of parameters compared to LSTM
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GRU: Architecture
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GRU: Functionality
• Update gate: zt = σ(wzht−1 + uzxt)

• Reset gate: rt = σ(wrht−1 + urxt)

• Candidate gate: h̃t = ϕ(w(rt ⊙ ht−1) + uxt)

• Output gate: ht = zt ⊙ ht−1 + (1− zt)⊙ h̃t

• Analogy: xt - weather today, ht−1 - clothes wore yesterday, h̃t - candidate clothes for today,
ht - actual clothes wear today.
• Update and reset gates determine to what extent we take into account these factors -

Ignore weather completely, Forget what we wore.
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Long-term vs Short-term Memory
• A vanilla RNN carries forward a hidded state across the time layers
• An LSTM carries forward both a hidden state ht and a cell state ct

• The hidden state is like short-term memory
• The cell state is like a long-term memory
• Gates are used to control updates from layer to layer
• Leaking between short-term and long-term meory allowed
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LSTM
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LSTM: Functionality
• Forget gate: ft = σ(wfht−1 + ufxt + bf)

• Input gate: it = σ(wiht−1 + uixt + bi)

• Output gate: ot = σ(woht−1 + uoxt + bo)

• Candidate memory: c̃t = ϕ(wht−1 + uxt + bc)

• Memory cell ct = ftct−1 + itc̃t

• Output gated memory: ht = otϕ(ct)
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LSTM Representations
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LSTM



−→h 1
←−h 1

x1

o1

L1

y1

−→h 2
←−h 2

x2

o2

L2

y2

−→h 3
←−h 3

x3

o3

L3

y3

−→h t−1
←−h t−1

xt−1

ot−1

Lt−1

yt−1

−→h t
←−h t

xt

ot

Lt

yt

CS
55
1

42

Bidirectional RNN
• 1. I am ___. 2. I am ___ hungry. 3. I am ___ hungry, and I can eat a full tandoori!
• Possible tokens: First - happy, Second - not / very, Third - ‘not’ is incompatible
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Bidirectional RNN
• 1. I am ___. 2. I am ___ hungry. 3. I am ___ hungry, and I can eat a full tandoori!
• Possible tokens: First - happy, Second - not / very, Third - ‘not’ is incompatible
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Machine Translation: Encoder-Decoder
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Machine Translation: Encoder-Decoder
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Attention with RNN
• αt = NN(st−1, ht)

• Softmax is used for weightage
• Context =

∑
t αtht
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Image captioning



Image source: Li et. al. CS231 slides
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Image captioning - success story
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Image captioning - failure story
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Visual Question Answering - 1
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Visual Question Answering - 2
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RNN: Summary
• RNN is good to model sequence relation
• It models sequence using recurrence relation
• It can handle variable length input
• RNN needs to be trained backpropagation through time



CS
55
1

51

Word Embedding
• Computer only understands numbers
• Words need to be converted into numbers
• 1-hot encoding - no relation among similar words
• Embedding - similar words have close relation

• Neural networks can be used to learn word embedding
• Consider the following situation: We have n documents and a vocabulary of size d
• It can be represented as a document-word matrix of size n× d
• Let it be factorized as D ≈ UV, where U = n× k and V = k× d
• Rows of U contains embedding of documents
• Columns of V contains embedding of words
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Word2Vec
• Predicting target word from a given context
• It tries to predict ith word in a sentence using a window of width t around the word
• wi−t . . .wi−1wi+1 . . .wi+t are used to predict wi
• This model is known as continuous bag of words (CBOW) model

• Predicting context from target word
• It tries to predict a context given a single word
• Predict wi−t . . .wi−1wi+1 . . .wi+t from the given wi
• This is known as skipgram model
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CBOWModel
• Training inputs are all context-word pairs
• Context is input, word - outcome. Supervised learning
• Context length m = 2t (eg. w1, . . . ,wm), outcome is w
• w may be viewed as categorical variable with d possible values, d is the size of vocabulary
• Target is to compute p(w|w1 . . .wm) and maximize the product of these probabilities

over all training examples
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CBOWModel: Architecture
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Architecture details
• Input: m × d, one-hot encoding (xij ∈ {0, 1}) for each m. i - context position, j - word

identifier
• Hidden layer - p nodes
• Output - d nodes
• ūj = (uj1, . . . , ujp) - p dimensional embedding of the j th word over entire corpus
• h̄ = (h1, . . . , hp) - embedding of specific instatiation of an input context

• hq =

m∑
i=1

 d∑
j=1

ujqxij

 ∀q = {1, . . . , p}

• In vectored form h̄ =

m∑
i=1

d∑
j=1

ūjxij

• One hot encoding are aggregated - ordering of words within the window size m does not
affect the output
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Architecture details (contd)
• Output yj = 1 if the target word w is the j th word, 0 otherwise
• Softmax computes the probability p(w|w1 . . .wm) of the one-hot encoded ground truth

outputs yj as follows: ŷj = p(yj = 1|w1 . . .wm) =
exp(

∑p
q=1 hqvqj)∑d

k=1 exp(
∑p

q=1 hqvqk)
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Skipgram
• Reverse model of CBOW
• Traget word is used to predict m context words
• One input, m output
• w is input, w1, . . . ,wm - output
• Goal is to estimate p(w1, . . . ,wm|w)
• Input is one-hot encoding
• Output is also one-hot encoding
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Skipgram model: Architecture
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Skipgram model
• Input - x1, . . . , xd - binary inputs
• Output - m× d, yij ∈ {0, 1}
• Final output ŷij = p(yij = 1|w), probabilities ŷij in the output layer for fixed i and varying

j sum to 1
• Hidden layer contains p units, h1, . . . , hp

• Each xj is connected to all p nodes, matrix U has size d× p
• The p hidden nodes are connected to each of m groups of d output nodes with the same

set of shared weights, matrix V has size p× d
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Skipgram model
• The output of hidden layer can be computed as hq =

d∑
j=1

ujqxj, ∀q

• If the input word w is the r th word, then one can simply copy urq to the q th node
• Eventually r th row (ūr) of U is copied to the hidden layer

• Output is determined by V
• Output ŷij is the probability that the word in the i th context position takes on the j th

word
• Since V is shared, the neural network predicts the same multinomial distribution for each

context word
• Therefore we have ŷij = p(yij|w) =

exp(
∑p

q=1 hqvqj)∑d
k=1 exp(

∑p
q=1 hqvqk)

, ∀i

• Denominator is independent of context position


