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Introduction
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Recurrent neural networks are used for processing sequential data in general
e Convolution neural network is specialized for image

Capable of processing variable length input

Track long term dependencies

Need to maintain information about ordering

Shares parameters across different part of the model

Examples:
e Example: "I went to lIT in 2017" or "In 2017, | went to IIT"
e Example: "l grew up in Bengal. .... | can speak fluent "

e Example: The food was good, not bad at all -vs- The food was bad, not good at all
e For traditional machine learning models require to learn rules for different positions



Modeling of Natural Language
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e Language are the most common sequence models
e Natural language model requires a probability distribution over string
e Terminology

e Bag of Words - a representation of text that describes the occurrence of words within a
document
e TF(x,d) — we count how prevalent each term x is in a single document d
e Words are commonly normalized to lowercase and stemmed by removing their suffixes; com-
mon stopwords (such as a, an, the, etc.) are removed
total number of documents )

IDF(x) =1+1
° (x) tlog number of documents containing x

e TFIDF(x,d) = Tf(x,d) x IDF(x) — used for measuring similarity between a query and a
document
e N-grams — A sequence of n adjacent words is called an n-gram

e A bag of words is the 1-gram or unigram model



RNN: Predict next word
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e Word cannot be fed directly

e Words need to be represented as numbers

e Encoding scheme:

e 1-hot encoding: Only one element will be 1, eg, [0,0, 1,0, ...]. Vector size = Vocabulary

size

e Word embedding: Only a set of numbers will be used, eg., [0.87,0.93,0.14, ...]. Vector
size is < Vocabulary size
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Types of applications
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Types of applications
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Computational graph
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e Formal way to represent the computation
e Unfolding the graph results in sharing of parameters
e Consider a system st = f(s(t=1) @) where s(!) denotes the state of the system

e |t is recurrent
e For finite number of steps, it can be unfolded
e Example: s®®) = f(s?),9) = D), 9),0)



System with inputs
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e A system will be represented as s(t) = f(s(t=1) x(1) @)
e A state contains information of whole past sequence
e Usually state is indicated as hidden units such that h(Y) = fh(t=1) x(1) @)

e While predicting, network learn h(®) as a kind of lossy summary of past sequence upto t
e h(® depends on (x(¥,x(t=D . x(1)

—_—
Unfold



System with inputs (contd.)
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Unfolded recursion after t steps will be h(t) = g(®)(x(0) x(t=1) " x(1)) = fh{t=1) (1) @)
Unfolding process has some advantages

e Regardless of sequence length, learned model has same input size
e Uses the same transition function fwith the same parameters at every time steps

Can be trained with fewer examples
Recurrent graph is succinct

Unfolded graph illustrates the information flow



Recurrent connection in hidden units
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Output to hidden unit connection

1

~
A

—~

N
4

-~

O-OTDO
Srerolere
@@@m@é

\
\Il(
¢~ s

e~
\, .

B 1
~ 1
S
-

-

e =

4

Unfold

a
01050:0'0

T5SS2

10



Sequence processing
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Stacked/Deep RNN
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Recurrent neural network
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Function computable by a Turing machine can be computed by such recurrent network of

finite size

tanh is usually chosen as activation function for hidden units @
Output can be considered as discrete, so y gives unnormalized log probabilities Vv
Forward propagation begins with initial state hg

So we have, u

o ol = b+ Wh(t= 4 Ux(® é
e h(® = tanh(a®)

° y(t) —=c+ Vh® " ¥2 ¥3 Ye-1

Yt
o y(B = softmax(y(") ;l\ v v v v
Input and output have the same length @ WY Y ) W @ w °

u

Xt

T

X X2 X3 Xt—1



Example: char-rnn
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target chars:

output layer

hidden layer

input layer

input chars:

Image source: http://karpathy.github.io/2015/05 /21 /rnn-effectiveness/
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RNN: William Shakespeare
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PANDARUS :

Alas, I think he shall be come approached and the day
When I,ittle srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,

I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.

Second Lord:

They would be ruled after this chamber, and

my fair nues begun out of the fact, to be conveyed,
Whose noble souls I'll have the heart of the wars.

Clown:
Come, sir, I will make did behold your worship.

VIOLA:
I'll drink it.

Image source: http://karpathy.github.io/2015/05 /21 /rnn-effectiveness/

VIOLA:

Why, Salisbury must find his flesh and thought
That which I am not aps, not a man and in fire,
To show the reining of the raven and the wars

L0 grace my hand reproach within, and not a fair are hand,

That Caesar and my goodly father's world;

When I was heaven of presence and our fleets,

We spare with hours, but cut thy council I am great,
Murdered and by thy master's ready there

My power to give thee but so much as hell:

Some service in the noble bondman here,

Would show him to her wine.

KING LEAR:

0, if you were a feeble sight, the courtesy of your law,
Your sight and several breath, will wear the gods

With his heads, and my hands are wonder'd at the deeds,
So drop upen your lordship's head, and your opinion
Shall be against your honour.



RNN: Maths / Latex-1
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For @,_, . where £, = 0, hence we can find a closed subset # in H and
any sets F on X, U is a closed immersion of S, then U — T is a separated algebraic
space.

Proof. Proof of (1). It also start we get

S=Spec(R)=U xxUxxU
and the comparicoly in the fibre product covering we have to prove the lemma
generated by [[Z xy U — V. Consider the maps M along the set of points
Sehypps and U — U is the fibre category of S in U in Section, ?? and the fact that
any U affine, see Morphisms, Lemma 77. Hence we obtain a scheme S and any
open subset W C U in Sh(G) such that Spec(R') — S is smooth or an

U= U U; x5, Us
which has a nonzero morphism we may assume that f; is of finite presentation over
S. We claim that Ox . is a scheme where z,2',5” € S’ such that Ox o — O, . is
separated. By Algebra, Lemma 77 we can define a map of complexes GLs/ (2'/S”)
and we win. ]
To prove study we see that F|y; is a covering of X”, and T; is an object of Fxs for
i >0 and F, exists and let F; be a presheaf of Ox-modules on C as a F-module.
In particular F = U/F we have to show that
M=1 Bspec(r) 05, = ix' F)
is a unique morphism of algebraic stacks. Note that
Arrows = (Sch/S) 7 ¢ (Sch/S) spps
and
V =T(S,0) — (U,Spec(A))
is an open subset of X. Thus U is affine. This is a continuous map of X is the
inverse, the groupoid scheme S.
Proof. See discussion of sheaves of sets. o
The result for prove any open covering follows from the less of Example ??. It may
replace S by Xepaces,étate Which gives an open subspace of X and T equal to Szar,
see Descent, Lemma ??. Namely, by Lemma ?? we see that R is geometrically
regular over S.

Lemma 0.1. Assume (3) and (3) by the construction in the description.
Suppose X = lim | X| (by the formal open covering X and a single map Proj (A) =
Spec(B) over U compatible with the complex
Set(A) = T(X,0x.0,)-

When in this case of to show that @ — Cz/x is stable under the following result
in the second conditions of (1), and (3). This finishes the proof. By Definition 77
(without element is when the closed subschemes are catenary. If T is surjective we
may assume that T is connected with residue fields of S. Moreover there evists a
closed subspace Z C X of X where U in X" is proper (some defining as a closed
subset of the uniqueness it suffices to check the fact that the following theorem

(1) f is locally of finite type. Since § = Spec(R) and ¥ = Spec(R).

Proof. This is form all sheaves of sheaves on X. But given a scheme U and a
surjective étale morphism U — X. Let UNU = [[,_;. ., Us be the scheme X over
§ at the schemes X; — X and U = lim; X,.

The following lemma surjective restrocomposes of this implies that Fp, = Fy, =

Fogznp:

Lemma 0.2. Let X be a locally Noetherian scheme over S, E = Fy)g. SetT =
J CT,. Since I" C I" are nonzero over iy < p is a subset of F,,0 0 Az works.

Lemma 0.3. In Situation ??. Hence we may assume q' = 0.

Proof. We will use the property we see that p is the mext functor (?7). On the
other hand, by Lemma ?? we see that
D(Ox-) = Ox(D)

where K is an F-algebra where 6,41 is a scheme over S. o

Image source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/




RNN: Maths / Latex-2
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Proof. Omitted. ]

Lemma 0.1. Let C be a set of the construction.
Let C be a gerber covering. Let F be a quasi-coherent sheaves of O-modules. We
have to show that

Oo, =0x(L)

Proof. This is an algebraic space with the composition of sheaves F on Xya. we
have

Ox(F) = {morphy x oy (G, F)}
where G defines an isomorphism F — F of O-modules. o
Lemma 0.2. This is an integer Z is injective.
Proof. See Spaces, Lemma ??. (m]
Lemma 0.3. Let S be a scheme. Let X be a scheme and X is an affine open

covering. LetU C X be a canonical and locally of finite type. Let X be a scheme.
Let X be a scheme which is equal to the formal complex.

The following to the construction of the lemma follows.
Let X be a scheme. Let X be a scheme covering. Let

b: XY 2Y 3Y 5 Y xxY 2 X,
be a morphism of algebraic spaces over S and Y .

Proof. Let X be a nonzero scheme of X. Let X be an algebraic space. Let F be a
quasi-coherent sheaf of Ox-modules. The following are equivalent

(1) F is an algebraic space over S.

(2) If X is an affine open covering.

Consider a common structure on X and X the functor Ox (U) which is locally of
finite type.

This since € F and « € G the diagram

§— &

|

£

Ox:

gory

Spec(Ko) Morsus d(Oy,0.6)

is a limit. Then G is a finite type and assume S is a flat and F and G is a finite
type f.. This is of finite type diagrams, and
o the composition of G is a regular sequence,
o Ox- is a sheaf of rings.
a

Proof. We have sce that X = Spec(R) and F is a finite type representable by
algebraic space. The property F is a finite morphism of algebraic stacks. Then the
cohomology of X is an apen neighbourhood of U. a
Proof. This is clear that G is a finite presentation, see Lemmas ??.
A reduced above we conclude that U is an open covering of C. The functor F is a
“field

Oxz =+ Fr 1Oxuu) — 05,05 (0X,)
is an isomorphism of covering of Oy, . If 7 is the unique element of F such that X
is an isomorphism.
The property F is a disjoint union of Proposition ?? and we can filtered set of
presentations of a scheme Ox-algebra with F are opens of finite type over S.
If F is a scheme theoretic image points.

If F is a finite direct sum Ox, is a closed immersion, see Lemma ?2. This is a
sequence of F is a similar morphism.

Image source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/




RNN: Linux Kernel
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* Increment the size file of the new incorrect UI FILTER group information * Copyright (c) 2006-2010, Intel Mobile Communications. All rights reserved.

* of the size generatively. -

*/ - This program is free software; you can redistribute it and/or modify it
static int indicate_policy(void) * under the terms of the GNU General Public License version 2 as published by
{ * the Free Software Foundation.

int error; » ¥

if (fd == MARN_EPT) { § This program is distributed in the hope that it will be useful,

- * but WITHOUT ANY WARRANTY; without even the implied warranty of
* The kernel blank will coeld it to userspace *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
*/ .
if (ss->segment < mem_total) * GNU General Public License for more details.
unblock_graph_and_set_blocked(); *
else *  You should have received a copy of the GNU General Public License
ek = 1 along with this program; if not, write to the Free Software Foundation,
goto bail; * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
%/

segaddr = in_SB(in.addr);

SAEER o 8 4 108 #include <linux/kexec.h>

setup_works = true; #include <linux/errno.h>

for (1= 6; i< blocks; i) {
seq = buf[i++];
bpf = bd->bd.next + 1 * search;
if (fd) {
current = blocked;

#include <linux/ie.h>

#include <linux/platform_device.h>
#include <linux/multi.h>

#include <linux/ckevent.h>

+
}
rw->name = "Getjbbregs”;
bprm_self clearl(&iv->version);

#include <asm/io.h>
#include <asm/prom.h>
#include <asm/e820.h>

regs->new = blocks[ (BPF_STATS << info->historidac)] | PFMR CLOBATHINC SECONDS << 12; #include <asm/system_info.h>
return segtable; - - - #include <asm/setew.h>
¥ #include <asm/pgproto.h>

Image source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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RNN: Pros and Cons
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e Pros:

Can process any length input

e Computation for step t can use information from distant past (theoretically)
e Model size does not increase for longer input

e Same weight parameters are shared across the time steps

e Cons:

e Computation is usually slow
e Difficult to access information to distant past
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Total loss
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Gradient computation in RNN
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e The network will be unfolded and gradient will be back propagated
e Number of stages need to be decided
e |ssue in gradient computation

e Vanishing gradients
e Exploding gradients

=(®)



Gradient computation in RNN
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The network will be unfolded and gradient will be back propagated
Number of stages need to be decided
Issue in gradient computation

e Vanishing gradients
e Exploding gradients

Loss function
out
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Gradient computation in RNN
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The network will be unfolded and gradient will be back propagated
Number of stages need to be decided
Issue in gradient computation

e Vanishing gradients
e Exploding gradients

Loss function
out T out

° = %Z(Ok_)/k)Q: L= %ZZ(Otk_Ytk)Q

k=1 t=1 k=1

=(®)



Gradient computation in RNN
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The network will be unfolded and gradient will be back propagated
Number of stages need to be decided
Issue in gradient computation

e Vanishing gradients

=(®)

e Exploding gradients

Loss function

1 out 1 T out
‘lt*52(0k—)/k)'L*§ZZ(Otk_ytk) v
k=1 t=1 k=1
7 out
o [ =— Z Z ek In oge + (1 — yu) In(1 — o)
t=1 k=1

Truncated backpropagation through time (BPTT)



Gradients in RNN-1
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e Consider a simple situation with following dynamics:
ht - f(Xta ht—l; Wh)
or = glhe,wo)



Gradients in RNN-1
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e Consider a simple situation with following dynamics:
ht - f(Xta ht—l; Wh)
or = glhe,wo)

e Assume that the loss is computed by unfolding the system for 7 units of time
1 T
L(X1y e ooy Xy Vi ooy Yoy Why Wo) = — g I(yt, 0
( 1 Ty Y1 Y7, Wh o) - ()/t t)

t=1



Gradients in RNN-1
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e Consider a simple situation with following dynamics:
ht - f(Xta ht—l; Wh)
or = glhe,wo)

e Assume that the loss is computed by unfolding the system for 7 units of time
T

1
L(X1y e ooy Xy Vi ooy Yoy Why Wo) = — I(yt, 0
(x1 Ty Vs e ey Yoy Why Wo) T;(Yt t)
e Compute the derivative with respect to wy using chain rule
oL

ow,



Gradients in RNN-1
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e Consider a simple situation with following dynamics:
ht - f(Xta ht—l; Wh)
or = glhe,wo)

e Assume that the loss is computed by unfolding the system for 7 units of time
T

1
L(X17-~‘7X7'>y17"'7_y7'7Wh7 WO) — ;Z/(thot)

t=1
e Compute the derivative with respect to wy using chain rule
_ Z Ol(yt, o)
aWh Owp,



Gradients in RNN-1
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e Consider a simple situation with following dynamics:
ht - f(Xta ht—l; Wh)
or = glhe,wo)

e Assume that the loss is computed by unfolding the system for 7 units of time
T

1
L(Xh e Xy Y1y ooy Yy Why WO) — ; ;/(Yn Ot)
e Compute the derivative with respect to wy using chain rule

Z (9/ )/t, Ot _ l ZT: (9/(yt, Ot-) ag(ht, Wo) (9ht
T t=1

ath Owp, dos oh,  Ow



Gradients in RNN-1
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Consider a simple situation with following dynamics:
ht - f(Xta ht—l; Wh)
or = glhe,wo)

Assume that the loss is computed by unfolding the system for 7 units of time
T

1
L(Xh e Xy Y1y ooy Yy Why WO) — ; ;/(th Ot)
Compute the derivative with respect to wy using chain rule

Z (9/ )/t, Ot _ l ZT: (9/(yt, Ot-) ag(ht, WO) 3ht
T t=1

ath Owp, dos oh,  Ow

oh
Computation of third factor in above, a—t is tricky. It needs to be computed recurrently

Wh
Ohe
0 Wh



Gradients in RNN-1
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Consider a simple situation with following dynamics:
ht - f(Xta ht—l; Wh)
or = glhe,wo)

Assume that the loss is computed by unfolding the system for 7 units of time
T

1
L(Xh e Xy Y1y ooy Yy Why WO) — ; ;/(th Ot)
Compute the derivative with respect to wy using chain rule

oL 8/ )/t, Ot o l T (9/(yt, Ot) 8g(ht, WO) 8ht
awh Z ow, T ; 0o Ohy  Owy

oh
Computation of third factor in above, a—t is tricky. It needs to be computed recurrently
Wh
Ohy o Of(xt, he—1, wp) I Of(xt, he—1, wp) Oht_q

aWh N aWh 8ht_1 8Wh




Gradients in RNN-2
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e Above equation is similar to a9 = 0, and a; = by + cta;—1 for t=1,2,...



Gradients in RNN-2
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e Above equation is similar to a9 = 0, and a; = by + cta;—1 for t=1,2,...

e Then for t > 1, a; can be expressed in the following form

t

t—1
ar = by + Z H Gj b;

i=1 \Jj=it+1



Gradients in RNN-2
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e Above equation is similar to a9 = 0, and a; = by + cta;—1 for t=1,2,...

e Then for t > 1, a; can be expressed in the following form

t

t—1
ar = by + Z H Cj b;

i=1 \Jj=i+1

e Hence, by substituting a;, bt, c; appropriately, we get

Oh;

af(Xt, ht,

t—1 t

owy,

owy,

Of(xi, hi—1, wp)

1, Wh) +Z H Of(xj; hj—1, wh)

h;_
i—1 \j=it1 Ohj—1

owy,



Gradient in matrix form
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Gradient in matrix form
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w11

g(ll) —{ X1 ~( h; J=— ggz)
%% hl W T
hQ _ 11 Wi2 W13 X1
h3 Wo1 W2 Wa3 X2
i3 h=WTx
2
wa1
Wo2
gy (2 (s )&



Gradient in matrix form
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w11

g(ll) —{ X1 ~( h; J=— ggz)
wi2
w13
2
w21
w22
(1) > (2)
g2 —\ Wos3 h3 ~ g3

|
|

T
Wil Wi2 W13] [

W21 W2 Wo3

h=WTx

wip Wiz Wi3
W1 W2 W23
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Backpropagation through time-1
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e Consider RNN excluding bias, x; € RY, h; € R" o, € RY, W € R"*" U € R4 VvV ¢ RI*P

ht = Wht_l + UXt
oy = Vht
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Backpropagation through time-1
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e Consider RNN excluding bias, x; € RY, h; € R" o, € RY, W € R"*" U € R4 VvV ¢ RI*P

ht = Wht_l + UXt
oy = Vht

e Loss function over a period of 7 time units can be computed as

1 T
L= - Z [(yt, or)
t=1

=~(9)



Backpropagation through time-1
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e Consider RNN excluding bias, x; € RY, h; € R" o, € RY, W € R"*" U € R4 VvV ¢ RI*P

ht = Wht_l + UXt
oy = Vht

e Loss function over a period of 7 time units can be computed as
1 T
L=— I(ys, 0
- ; (vt ot)

oL oL oL

W d t te —, =, =——
e We nee ocompueaw,au,av

=~(9)



Backpropagation through time-2
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e Differentiating the loss with respect to model output at any time step t is
8L - 3/(ot,yt)

_ c Rq
801_L 801_L - T
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Backpropagation through time-2
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e Differentiating the loss with respect to model output at any time step t is

8L 8/(0t, }’t)
I N A RY
801_L 801_L - T <

e Calculate the gradient of loss wrt V in output layer

oL
ov

=~(9)



Backpropagation through time-2
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e Differentiating the loss with respect to model output at any time step t is
8L - 3/(ot,yt)
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e Calculate the gradient of loss wrt V in output layer
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Backpropagation through time-2

C€S551

e Differentiating the loss with respect to model output at any time step t is
8L - 3/(ot,yt)
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e Calculate the gradient of loss wrt V in output layer
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Backpropagation through time-2
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e Differentiating the loss with respect to model output at any time step t is
8L - 3/(ot,yt)

= c Rq
801_L 801_L - T

e Calculate the gradient of loss wrt V in output layer

av Z[H(m aotﬂ ZgoLt T

e At the final time step 7, L depends on h., only via o,. Therefore, the gradient will be

oL
oh,
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Backpropagation through time-2
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e Differentiating the loss with respect to model output at any time step t is
8L - 3/(ot,yt)

= c Rq
801_L 801_L - T

e Calculate the gradient of loss wrt V in output layer

av Z[H(m aotﬂ ZgoLt T

e At the final time step 7, L depends on h., only via o,. Therefore, the gradient will be
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Backpropagation through time-2

C€S551

e Differentiating the loss with respect to model output at any time step t is
8L - 3/(ot,yt)

= c Rq
801_L 801_L - T

e Calculate the gradient of loss wrt V in output layer

av Z[H(m aotﬂ ZgoLt T

e At the final time step 7, L depends on h., only via o,. Therefore, the gradient will be

oL oL do,\] 7oL
oh, = [H <608h>] =V 5.

<



Backpropagation through time-3

C€S551

e For t < 7, L depends on h; via hyy1 and o;. Hence, using chain rule
oL
Ohy
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Backpropagation through time-3
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e For t < 7, L depends on h; via hyy1 and o;. Hence, using chain rule
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Backpropagation through time-3
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e For t < 7, L depends on h; via hyy1 and o;. Hence, using chain rule

L Ol Oheis AL o, oL oL
8 8 TPt —w vTZs
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Backpropagation through time-3
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e For t < 7, L depends on h; via hyy1 and o;. Hence, using chain rule
L L h L L oL
OL_[pp( 0L Ohea)] | (0L 000)] _yyr OL ol
Bht 3ht+1 (9ht BOt 8ht 8ht+1 801-
e Expanding the recurrence computation for any time step 1 < t < 7, we get
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Backpropagation through time-3
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e For t < 7, L depends on h; via hyy1 and o;. Hence, using chain rule
L L h L L oL
OL_[pp( 0L Ohea)] | (0L 000)] _yyr OL ol
Bht 3ht+1 (9ht BOt 8ht 8ht+1 801-
e Expanding the recurrence computation for any time step 1 < t < 7, we get
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Backpropagation through time-3
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e For t < 7, L depends on h; via hyy1 and o;. Hence, using chain rule
oL oL  0Ohgq oL Qo T+ OL oL
it el 20 | SRR V'Y viZ=
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e Expanding the recurrence computation for any time step 1 < t < 7, we get

8L B ° ™NT—i\,T 8L
3Th _Z(W ) v 0074t

=t
e Computing gradient wrt U
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Backpropagation through time-3
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e For t < 7, L depends on h; via hyy1 and o;. Hence, using chain rule
oL oL  0Ohgq oL Qo T+ OL oL
it el 20 | SRR V'Y viZ=
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e Expanding the recurrence computation for any time step 1 < t < 7, we get
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e Computing gradient wrt U
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Backpropagation through time-3
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e For t < 7, L depends on h; via hyy1 and o;. Hence, using chain rule
oL oL  0Ohgq oL Qo T+ OL oL
it el 20 | SRR V'Y viZ=
Oh, [H (6ht+1’ ane )| 11 3o o, Ohers Y o
e Expanding the recurrence computation for any time step 1 < t < 7, we get

8L B ° ™NT—i\,T 8L
3Th _Z(W ) v 0074t
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e Computing gradient wrt U
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Backpropagation through time-3

C€S551

For t < 7, L depends on h; via hy1 and o;. Hence, using chain rule
L L h L L L
37: H 9 ’8”1 + H 877% - wT o +\/T87
Bht 3ht+1 (9ht BOt 8ht 8ht+1 801-
Expanding the recurrence computation for any time step 1 < t < 7, we get

8L B ° ™NT—i\,T 8L
3Th _Z(W ) v 0074t

i=t

Computing gradient wrt U
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Computing gradient wrt W
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Backpropagation through time-3
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For t < 7, L depends on h; via hy1 and o;. Hence, using chain rule
L L h L L L
37: H 9 ’8”1 + H 877% - wT o +\/T87
Bht 3ht+1 (9ht BOt 8ht 8ht+1 801-
Expanding the recurrence computation for any time step 1 < t < 7, we get

8L B ° ™NT—i\,T 8L
3Th _Z(W ) v 0074t

i=t

Computing gradient wrt U
OL (0L oh)] oL
U~ ohe U )| T 2 on.

<

Computing gradient wrt W
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Backpropagation through time-3
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For t < 7, L depends on h; via hy1 and o;. Hence, using chain rule
oL oL  0Ohgq oL Ooy T+ OL oL
i el 20 | SRR V'Y viZ=
Bhy [H (6ht+1’ Jh, >] + [H (80t’ aht>] Oherr |V Doy

Expanding the recurrence computation for any time step 1 < t < 7, we get

O] iy, OL
%_Z(W) VaoTth/

i=t

Computing gradient wrt U
OL (0L oh)] oL
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Computing gradient wrt W
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Gradient issues
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e Gradient
oL
oW

@i%iﬁ



Gradient issues

C€S551

e Gradient
oL~ ok
oW — oW

@i%iﬁ



Gradient issues

C€S551

e Gradient
oL~ ok
oW — oW

T

=20

t=1 k=1

t

%
Oyt

@i%iﬁ



Gradient issues

C€S551

e Gradient
oL~ ok
oW — oW

T t

Ol Oyt

@i%iﬁ



Gradient issues
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e Gradient
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Gradient issues
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e Gradient
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Gradient issues
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e Gradient

oL <0l
W W T 2
t=1 t=1 k=1

e Now we have,
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Gradient issues
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e Gradient
OL <~ 0k S~ Ol Dye Ohe Ohy
OW = aW ZZ 3y Ohe Ohy OW @
e Now we have, ‘
ohe _ t1 O e v
an = W 'dia h;_
ohe — A1 dhiy il}rl gl (hi—1)]
e Issues in gradient Y
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Gradient issues in RNN
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Issues with Vanilla RNN
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e Hard to retain the information in hidden state with successive matrix multiplications

e Hidden states of recurrent networks are inherently short-term
e No mechanism exist for fine grained control of what information to retain from hidden
state

e The LSTM / GRU use analog gates to control the flow of information



RNN variants

@—> RNN
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Gated Recurrent Unit

C€S551

An improved version of RNN
It uses the notion of gating in propagating information
Similar to Long Short-Term Memory (LSTM)

Uses less number of parameters compared to LSTM



GRU: Architecture
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GRU: Functionality
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Update gate: z; = o(wzhe—1 + uzxt)

Reset gate: ry = o(w,hi—1 + upxe)
Candidate gate: h; = d(w(re © he—1) + uxy)
Output gate: hy =z O hy—1+ (1 —z) © hy

Analogy: x: - weather today, h;_1 - clothes wore yesterday, 71t - candidate clothes for today,
ht - actual clothes wear today.

Update and reset gates determine to what extent we take into account these factors -
Ignore weather completely, Forget what we wore.



Long-term vs Short-term Memory

C€S551

e A vanilla RNN carries forward a hidded state across the time layers
e An LSTM carries forward both a hidden state h; and a cell state ¢;
e The hidden state is like short-term memory
e The cell state is like a long-term memory
e Gates are used to control updates from layer to layer
e |eaking between short-term and long-term meory allowed



LSTM
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LSTM: Functionality

C€S551

Forget gate: f; = o(wshe—1 + upxe + bf)

Input gate: ir = o(wjhi—1 + uixt + b;)

Output gate: o = o(Woht—1 + UoXt + bo)
Candidate memory: ¢; = ¢(wh_1 + ux + be)
Memory cell ¢; = frci_1 + izt

Output gated memory: h; = orp(ct)



LSTM Representations
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Image source: Internet
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LSTM
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Bidirectional RNN

C€S551

e 1. |lam . 2. I am hungry. 3. | am hungry, and | can eat a full tandoori!

e Possible tokens: First - happy, Second - not / very, Third - ‘not’ is incompatible



Bidirectional RNN

C€S551

e 1. |lam . 2. I am hungry. 3. | am hungry, and | can eat a full tandoori!

e Possible tokens: First - happy, Second - not / very, Third - ‘not’ is incompatible
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Machine Translation: Encoder-Decoder
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Machine Translation: Encoder-Decoder
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hi = ho | hs | hs |—| h5
[ S N B
<start> | know Kannada <eos>

Nanage kannada gottu <end>
bttt
> 51 E= 52 E: 53 E: S4
: : :
1 1 1

!

]

il

i

<start> Nanage kannada gottu



Attention with RNN
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o a; = NN(si_1, he)

e Softmax is used for weightage Y1 Yt

e Context = Ztatht - -] St > St F---»

Oét,l; at,17 R at,T

softmax




Image captioning
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“straw” “hat” END

START “straw” “hat”

Image source: Deep Visual-Semantic Alignments for Generating Image Descriptions



Image captioning - success story
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A cat sitting on a A cat is sitting on a tree A dog is running in the A white teddy bear sitting in

suitcase on the floor branch grass with a frisbee the grass

Two people walking on A tennis player in action Two giraffes standing in a A man riding a dirt bike on
the beach with surfboards on the court grassy field a dirt track

Image source: Li et. al. CS231 slides



Image captioning - failure story
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~ " Abird is perched on

Amanina
baseball uniform
throwing a ball

A woman standing on a
beach holding a surfboard

A person holding a
computer mouse on a desk

Image source: Li et. al. CS231 slides



Visual Question Answering - 1
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Vehicles and Brands, Companies Objects, Material and
Transportation and Products Clothing

- .

Q: What sort of vehicle uses Q: When was the soft drink Q: What is the material used Q: What is the sports position Q: What is the name of the

] [ Sports and Recreation } [ Cooking and Food }

this item? company shown first created? to make the vessels in this of the man in the orange shirt? object used to eat this food?
A: firetruck A: 1898 picture? A: goalie A: chopsticks
A: copper

S R People and Everyday Life Plants and Animals Weather and Climate
Language and Culture

_ S5 3
Q: What days might | most Q: Is this photo from the 50’s Q: What phylum does this Q: How many chromosomes Q: What is the warmest outdoor
commonly go to this building? or the 90's? animal belong to? do these creatures have? temperature at which this kind
A: Sunday A:50's A: chordate, chordata A:23 of weather can happen?

A: 32 degrees

Image source: Internet



Visual Question Answering - 2
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4096 output units from last hidden layer 1024
(VGGNet, Normalized)

| [E

Convolution Layer Fully-Connected MLP
Pooling Layer ~ + Non-Linearity Pooling Layer

Fully-Connected

Convolution Layer
+ Non-Linearity

2X2x512 LSTM
N 1024

Point-wise ¢ connected Softmax
multiplication

Fully-Connected

“How many horses are in this image?”

Image source: Internet

112"



RNN: Summary
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RNN is good to model sequence relation
It models sequence using recurrence relation
It can handle variable length input

RNN needs to be trained backpropagation through time



Word Embedding
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Computer only understands numbers

Words need to be converted into numbers

e 1-hot encoding - no relation among similar words

e Embedding - similar words have close relation

Neural networks can be used to learn word embedding

Consider the following situation: We have n documents and a vocabulary of size d

e |t can be represented as a document-word matrix of size n x d
e let it be factorized as D~ UV, where U=nx kand V=kx d
e Rows of U contains embedding of documents
e Columns of V contains embedding of words



Word2Vec
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e Predicting target word from a given context
e |t tries to predict ith word in a sentence using a window of width t around the word
® Wi_¢...Wj_1Wit1 ... Wit are used to predict w;
e This model is known as continuous bag of words (CBOW) model
e Predicting context from target word
e |t tries to predict a context given a single word
e Predict wi_¢... Wj_1Wt1 ... W from the given w;
e This is known as skipgram model



CBOW Model
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e Training inputs are all context-word pairs

Context is input, word - outcome. Supervised learning

Context length m = 2t (eg. wy, ..., wy,), outcome is w

w may be viewed as categorical variable with d possible values, d is the size of vocabulary
Target is to compute p(w|w; ... w,,) and maximize the product of these probabilities

over all training examples



CBOW Model: Architecture
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X11| o
X12 | o
X13| o

°© [Upr]

X1d | o

ol V1
Y2
y3
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X22 | o
X23 | o
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ol Yd

X2d| o

Xm1l| o
Xm2| o
Xm3| 0

[Upr]
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Architecture details

C€S551

Input: m X d, one-hot encoding (x; € {0,1}) for each m. /- context position, j - word
identifier

Hidden layer - p nodes
Output - d nodes
uj = (uj,...,ujp) - p dimensional embedding of the j th word over entire corpus

h= (h1,...,hp) - embedding of specific instatiation of an input context

m

d
:Z ZquX,'j Vq:{l,...,p}
J=1

i=1

e In vectored form h = E g ujxjj
i=1 j=1

e One hot encoding are aggregated - ordering of words within the window size m does not
affect the output



Architecture details (contd)
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e Output y; = 1 if the target word w is the j th word, 0 otherwise

e Softmax computes the probability p(w|w; ...wy,) of the one-hot encoded ground truth
B eXp(ZZ:1 hqVa))
~ d

2 k=1 eXP(ZZ=1 hqVak)

outputs y; as follows: y; = p(y; = 1wy ... wp)



Skipgram
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e Reverse model of CBOW
e Traget word is used to predict m context words

e One input, m output

e wis input, wy,...,wy - output
e Goal is to estimate p(wy, ..., wn|w)
e Input is one-hot encoding

Output is also one-hot encoding



Skipgram model: Architecture
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X1
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Xd

[Upr]
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Skipgram model
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e Input - xq,...,Xy - binary inputs

e Output - mx d, y; € {0,1}

e Final output y;; = p(y;; = 1|w), probabilities y;; in the output layer for fixed i and varying
jsumto 1l

e Hidden layer contains p units, hy,..., hp

e Each x; is connected to all p nodes, matrix U has size d x p

e The p hidden nodes are connected to each of m groups of d output nodes with the same
set of shared weights, matrix V has size p x d



Skipgram model
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e The output of hidden layer can be computed as hg = Z UjgXj, Vq

j=1
If the input word w is the r th word, then one can simply copy u,q to the g th node
Eventually r th row (z,) of U is copied to the hidden layer

e Output is determined by V

Output yj; is the probability that the word in the i th context position takes on the j th
word
Since Vis shared, the neural network predicts the same multinomial distribution for each

eXp(ZZ:1 hqVqj)

D k=1 eXp(Zq:l hqvak)
Denominator is independent of context position

context word

Therefore we have y;; = p(y;j|w)

)



