CS551: Introduction to Deep Learning

Practical Methodology

Arijit Mondal

Dept. of Computer Science & Engineering Indian Institute of Technology Patna arijit@iitp.ac.in

1 CS551

Introduction

- Successful application of deep learning
 - Require knowledge of different techniques available
 - Need to know the principle how it works
 - Common issues faced
 - Require more data
 - Increase or decrease model complexity
 - Choice of regularizer

 - Optimization model
 - Debug procedure
- All are time consuming

Recommended design process

- Determine the goals
 - Choice of error metric
 - Target value for error metric
 - It depends on the problem at hand
 - Setup a working end-to-end pipeline
- Find out bottlenecks and components having poor performance
 - Overfitting, underfitting, defect in data or software etc.
- Repeatedly make incremental changes
 - Gather new data
 - Adjust hyperparameter
 - Try with different algorithms

- Achieving absolute zero error is nearly impossible
- Limited by finite data
 - More data can be collected after it is in operation
 - Data collection is a tedious process and requires money, time, human suffering
 - For benchmark, no extra data should be collected
 - Performance level
 - Academic setting use previously published results
 - Real world We need to have some information for it to be safe, cost effective, appealing to users

- PR-curve Threshold required
- Precision in y-axis and recall in x-axis
- To have single number for comparison **F-score** is used $(F = \frac{2pr}{p+r})$ Coverage — Fraction of examples for which the machine learning system able to produce

response

Accuracy vs Coverage trade-off

Selection of baseline

	Choice of optimization					
SGD with momentum with decay rate						
	• Batch normalization can help (specially for CNN or network with sigmoidal non-linearities)					
	For small batch size it is better to have regularization at the start					
	Early stopping is good					
	Dropout is a good regularizer					
CS551	Start with already existing model					
7						

Data

- Check for performance on training data
 - If it is not acceptable (and no more data is required)
 - Increase the model size
 - Add more layers, more units
 - Tune learning rate
 - Check optimization algorithm
 - Probably problem with training data!
 - Acceptable in training data, check performance in test data
 - Not acceptable in test data
 - May require more data, reduce model size

- To choose it manually, understanding of the hyperparameter is required
- For automatic selection, more computation are required
- For some hyperparameters, generalization error follow U shape curve

Time Memory Quality

Manual hyperparameter tuning

- Need to understand the relationship between hyperparameter and
 - Training error
 - Generalization error
 - Computational resource
 - Need to understand effective capacity
- Target of hyperparameter is to minimize generalization error
- Effective capacity
 - Representational capacity of model
 - Learning algorithm to minimize cost function
 - Degree to which the cost function and training procedure regularize the model

- Controls the effective capacity in a very complicated manner
 - Effective capacity is highest when learning rate is correct
- When learning rate is very high, training error may increase
- When learning rate us small, training will be slower and may prematurely stuck with high training error
- Tuning other parameters requires monitoring of training and test error
- Turning other parameters requires monitoring or training and test erro
 - If training error is higher than the desired target error
 - Increase capacity

Hyperparameters

units Learning rate Need to Improper learning rate tune optimally Convolution kernel width Need to Improper learning rate may result in poor performance Increases the number of May require 0 padding Memory and time will increase	(555)	Hyperparameters	Capacity	Reason	Caveats
Learning rate Need to tune optimally formance Convolution kernel Increase Increases the number of width Implicit 0 padding Increase Weight decay Decrease Need to Improper learning rate may result in poor performance Increases the number of May require 0 padding Memory and time will increase Keeps representation Memory and time will increase Weight decay Decrease Decrease Decrease Decrease Ensemble			Increase		Time and memory will
Convolution kernel Increase Increases the number of width parameters Memory and time will increase Implicit 0 padding Increase Keeps representation crease Weight decay Decrease Model parameters can become large Dropout rate Decrease Ensemble			tune opti-	Improper learning rate may result in poor per-	IIICrease
size large crease Weight decay Decrease Model parameters can become large Dropout rate Decrease Ensemble				Increases the number of	May require 0 padding. Memory and time will increase
become large Dropout rate Decrease Decrease Decrease		Implicit 0 padding	Increase	· ·	Memory and time will increase
		Weight decay	Decrease	•	
	<u> </u>	Dropout rate	Decrease	Ensemble	

Automatic hyperparameter optimization

- Neural network is good when lot of hyperparameters are available
- Manual tuning of hyperparameters is good but requires experience
- Start point may be known for some cases (manual tuning is possible)
- Hyperparameter optimization
 - Hyperparameter will have their own hyperparameters
 - Easier to choose secondary hyperparameters

- Performs well when applied repeatedly
 - Refinement of ranges
- Computation cost is very high

- Visualize the model in action
- Visualize the worst mistakes
- Reason about software using training and test error
- Fit a tiny data set
- Compare back-propagated derivatives
- Monitor histogram of activations and gradients