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Overview

e An autoencoder is a special type of
( > X feed forward neural network which

does the following

7%
" T o Encodes its input x; into a hidden

@ O O @ h representation h

o Decodes the input again from this

T hidden representation
x ° The model is trained to minimize a
certain loss function which will ensure

that %; is close to x; (we will see some
such loss functions soon)

h =g(Wx;+b)
X =f(W*h+c¢)
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Overview

Xi .
( > ! ¢ Let us consider the case where

- ’l‘ dim(h) < dim(x;)

!
o If we are still able to reconstruct X;
O O O O h perfectly from h, then what does it
W T

say about h?

< ) @ h is a loss-free encoding of x;. It cap-
Xi

tures all the important characteristics
of x;

h=g(Wx;+b)
%= f(W*h+e¢)

An autoencoder where dim(h) < dim(x;) is
called an under complete autoencoder
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Overview

o Let us consider the case when

<. N .)x dim(h) > dim(x;)

o In such a case the autoencoder could

] learn a trivial encoding by simply
<. . . . Q @ h copying x; into h and then copying
W T h into X;
(. . . .) X; ° Such an ident.ity encoding is useless
in practice as it does not really tell us
h = g(Wx; + b) anything about the important char-
%= f(W'h +c) acteristics of the data

An autoencoder where dim(h) > dim(x;) is
called an over complete autoencoder
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Design choices

* What should be the choice of f() and g()?
* What should be the loss function?



Choice of f(x) and g(x)

( )x =f(W'h+c) @ Suppose all our inputs are binary
e (each z;; € {0,1})

O Q O O h=gWxi+b) @ Which of the following functions
W

would be most apt for the decoder?

) X %; = tanh(W*h + ¢)
0 1 1 0 1 (binary inputs) Xi=W*'h+c
X; = logistic(W*h + ¢)

o Logistic as it naturally restricts all

. ) ) ) outputs to be between 0 and 1
g is typically chosen as the sigmoid

function
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Choice of f(x) and g(x)

Tij € R)

@ Suppose all our inputs are real (each
( ) % = f(W"h+¢)

we ]

G )

025 05 1.25 35 45

(real valued inputs)

Again, g is typically chosen as the
sigmoid function

@ Which of the following functions
would be most apt for the decoder?

%; = tanh(W*h + ¢)
X5 =W'h+c
%; = logistic(W*h + ¢)
e What will logistic and tanh do?
o They will restrict the reconstruc-

ted %; to lie between [0,1] or [-1,1]
whereas we want %; € R™
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Choice of loss function: Real x

C

we |

CISKeXOL
wo ]

(

h = g(Wx; + b)
%i=f(W'h+e¢)

@ All we need is a formula for

@ Consider the case when the inputs are real

valued

@ The objective of the autoencoder is to recon-

struct X; to be as close to x; as possible

® This can be formalized using the following

objective function:

1 m n
—_— — X
ww- c.b mzz i)’
m

: T -
i.e., ' “” - Z —x;) (R —x3)

@ We can then train the autoencoder just like

a regular feedforward network using back-
propagation

8.2 (0) 8.£(8)
v and 55

which we will see now
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Choice of Loss function: Real x

ZL(0) = (% —xi)T (% — x;)

a2‘-- oW+ Jhy | Daz IW*
o aL(0)  0£(0) (ﬂl@ﬂ@hl @
OW ~ 0Ohy | daz Ohy dag OW
@ We have already seen how to calculate the expres-
sion in the boxes when we learnt backpropagation
0L () _0Z(8)
ho=xi/ % /7758 /20 )0 Ohy 0%
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Choice of loss function: Binary x

( >x = f(W'h+e)

W

Q Q O O)r=stwxrn)
« e

0 1 1 0 1 (binary inputs)

What value of &;; will minimize this
function?

o Ifwy; =17

o Ifz; =07
Indeed the above function will be
minimized when &;; = z;; !

Consider the case when the inputs are
binary

We use a sigmoid decoder which will
produce outputs between 0 and 1, and
can be interpreted as probabilities.

For a single n-dimensional i** input we
can use the following loss function

n

min{— Z(xij log &5 4+ (1 — xi5) log(1 — &45)) }

=1
. - - L
Again we need is a formula for aéf;se‘)) and
8.2(6) .
~aw~ to use backpropagation

Joydeep Chandra 10/ 50



Choice of loss function: Binary x

T

Z(0) = — 2. (x5 log Tij + (1 — zi;) log(1 — £4;))
=1 , 9Z(0) _ 0L(6) 9hg| day
( OW* —  Ohy Oag| OW*

R 02(0)  0ZL(0) Ohg| Dag Ohy dag
ow Jhg  Odag| dhy day OW

o We have already seen how to
calculate the expressions in the
square boxes when we learnt BP

o The first two terms on RHS can be

97219 computed as:

21 ) P o

C ( ) _ Ohasz oh 2 Fij 1 i
(}hz ahgj

2.£(0) Day; = o(ag;)(1 —o(az;))
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Equivalence of Autoencoders and PCA

The encoder of a linear autoencoder is equivalent to PCA if we
@ use a linear encoder
@ use a linear decoder
@ use a squared error loss function

o and normalize the inputs to
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Regularization in Autoencoders

< > e While poor generalization could hap-
%

pen even in undercomplete autoen-

] coders it is an even more serious prob-
@ O O O O @ , lem for overcomplete z.mut-o encoders
| o Here, (as stated earlier) the model

can simply learn to copy x; to h and
< > i then h to X;

e To avoid poor generalization, we need
to introduce regularization
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Regularization in autoencoders

regularization term to the objective
W T function

Q O OTO O ®h€w *bcrraZZ(L‘J‘ ""'r:i:r‘)g"_/\“'(7’”2

i=1 j=1
@ )
_ This is very easy to implement and
just adds a term AW to the gradient
8.2(0) .
o (and similarly for other para-

meters)

( > - The simplest solution is to add a Lo-
Xi
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Regularization in autoencoders

. e Another trick is to tie the weights of
. the encoder and decoder ie., W* =
] wT
Q O O O O @ h e This effectively reduces the capacity
v T of Autoencoder and acts as a regular-

< > izer
Xj
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Denoising autoencoders

e A denoising encoder simply corrupts

% the input data using a probabilistic
process (P (r;j|x;;)) before feeding it

to the network

A simple P(7;j|7;;) used in practice
is the following

P(7ij = Ozij) = q
P(Zij = zijlei) =1—q

e In other words, with probability ¢ the
input is flipped to 0 and with probab-
ility (1 — ¢) it is retained as it is

Joydeep Chandra 16/ 50



Denoising Autoencoders: How does it help?

© 0000 O:

For example, it will have to learn to
reconstruct a corrupted ;; correctly by
relying on its interactions with other
elements of x;

@ This helps because the objective is

still to reconstruct the original (un-
corrupted) x;

T T

argmln— E E - IEJ
m

i=1 j=1

It no longer makes sense for the model
to copy the corrupted x; into h(x;)
and then into X; (the objective func-
tion will not be minimized by doing
50)

Instead the model will now have to
capture the characteristics of the data
correctly.
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Practical Applications: Handwritten digit recognition

0 1 2 3 9
1 88 54 1 g 65
W lbgs é2 ] T [ T T W
?29%3¢071 0 < >
O\ | ¢44a N5
QA7 9FO0+ /00 1x;| = 784 = 28 x 28
MNIST Data
3
28*28

Basic approach: Raw data as input
features
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Practical Applications: Handwriting Recognition

Mo~ O v

QR -0 W

QRN K~
T Lo -
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I~ P

C U o~W\n

C

)kz c R784

© oT
|

@ h e R4

¢

)

Ix;| = 784 = 28 x 28

3

AE approach: Learn important
characteristic of the data
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Practical Application: Handwriting Recognition

21 88514 1 g6 0 1 2 3 9
gULbqséasy W
7393 ¢071 0 - -
coliviians @O O new
Ha 79 0+ /0% T

« )

|x;| = 784 = 28 x 28

3

AE approach: Train a classifier on top of
hidden representation
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Visualizing Autoencoder Representations

( > X @ We can think of each neuron as a filter which

Xi will fire (or get maximally) activated for a cer-

tain input configuration x;

|
@@ O O> h o For example,
.’/ \\ m

hy = o(W{'x;) [ignoring bias b]

< ) X; Where W) is the trained vector of weights con-
necting the input to the first hidden neuron

o What values of x; will cause h; to be max-
imum (or maximally activated)
max {Wix:} e Suppose we assume that our inputs are nor-

ot [l =T =1 malized so that ||x;|| =1
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Visualizing Autoencoder Representations

e Thus the inputs

< > X Wi W W,

X = . B n
VWEWL Wiy VIV

O O O h will respectively cause hidden neurons 1 to n
to maximally fire
\ % o Let us plot these images (x;'s) which maxim-
< ! \

ally activate the first & neurons of the hidden
X; representations learned by a vanilla autoen-
coder and different denoising autoencoders

@ These x;’s are computed by the above formula
e Oy e el
st |xilP=xTx; =1
Wi
wWIw,

Solution: x; =
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Vanilla AE Denoising AE Denoising AE
q =025 q=050

@ The vanilla AE does not learn many meaningful patterns

@ The hidden neurons of the denoising AEs seem to act like pen-stroke detectors
(for example, in the highlighted neuron the black region is a stroke that you
would expect in a’0’ or a '2’ or a '3’ or a '8 or a '9’)

o As the noise increases the filters become more wide because the neuron has to
rely on more adjacent pixels to feel confident about a stroke

Joydeep Chandra 23/ 50



Alternate forms of Denoising AE

@ % e We saw one form of P(7;;|x;;) which flips a
fraction ¢ of the inputs to zero
@ 000 @ " o Another way of corrupting the inputs is to add

a Gaussian noise to the input

TU = Tij —+ L/V(O 1)
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Sparse Autoencoder

% @ A hidden neuron with sigmoid activation will
(]
have values between 0 and 1

o We say that the neuron is activated when its

@ O O O O @ h output is close to 1 and not activated when

its output is close to 0.

X; @ A sparse autoencoder tries to ensure the
neuron is inactive most of the times.
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Sparse Autoencoders

Xi

©O0000 O,

The average value of the

activation of a neuron [ is given
by

1 m
hy — h i
Pr mn ; (xi)

X

If the neuron [ is sparse (i.e. mostly inactive)
then p; — 0

A sparse autoencoder uses a sparsity para-
meter p (typically very close to 0, say, 0.005)
and tries to enforce the constraint j; = p
One way of ensuring this is to add the follow-
ing term to the objective function

k

Q) = Zplogpﬁ +(1—p)log
1
=1

1—p
1—p

When will this term reach its minimum value
and what is the minimum value? Let us plot
it and check.
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Sparse Autoencoders

p =02

0(8)

02 P

e The function will reach its minimum value(s) when p; = p.
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Now,

2(0) = 2(0) + 0)

Z(0) is the squared error loss or
cross entropy loss and (2(f) is the
sparsity constraint.

We already know how to calculate k P 1—p

62() Q0) = log & + (1 — p)log——

oW ” (0) IZ_;P 9‘51 ( p) glfﬁz

§ o0 =
Let us see how to calculate =55~ Can be re-written as
Finally, &
3_23)(9) B aLO) o) Q(f) = ;PlOQ'P_PZOQPI'f'(l_P)EOQ(l_P)_(l_P)lOg(l_pl)
ow oW aw B

By Chain rule:
(and we know how to calculate both

terms on R.H.S) o0Q(e) _ o0(0) dp

aw dp oW

o00)  1s0wey en(e aney T
ap L oe1 o 02 7 Ok
For each neuron [ € 1...k in hidden layer, we have

9Q(9) p, 1=p)

o g 1—p

dpt 0T T -
oW xi(g (W" xi + b)) (see next slide)

and



Derivation
95 _ [92r 962 Ope]
3]@’ OW oW - W

For each element in the above equation we can calculate gf{ (which is the partial
derivative of a scalar w.r.t. a matrix = matrix). For a single element of a matrix W;:-

op Y [# S g(Whxi + b;)}

aw;, W,
1 o O[a(Whxi+b)]
T m , W,
1

Z (Whxi + by) i
i=1

So In matrix notation we can write it as :
Ip

i = %0 (W, + b))

Joydeep Chandra
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Contrastive autoencoders

o A contractive autoencoder also tries
to prevent an overcomplete autoen- < )
X

coder from learning the identity func-

tiomn. T
@ It does so by adding the following reg-
ularization term to the loss function O O O O O O h
|

Q(0) = || Jx(h)[[3 ( ) x

where J, (h) is the Jacobian of the en-
coder.

e Let us see what it looks like.
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Contrastive Autoencoders

o If the input has n dimensions and the
hidden layer has & dimensions then

e In other words, the (I, j) entry of the
Jacobian captures the variation in the
output of the [** neuron with a small

variation in the j* input. Ol O
15'_.1:1 . _ﬁxn

Tz, ot ot Ome

Je(h) = |77 ) "

8hy, ahy,

dxy Oxn



Contrastive Autoencoder

@ What is the intuition behind this 7

e Consider g—:i, what does it mean if
Jhy
Ory 0

o It means that this neuron is not very
sensitive to variations in the input ;.

@ But doesn’t this contradict our other
goal of minimizing L£(f)) which re-
quires h to capture variations in the
input.

Joydeep Chandra
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Contrastive autoencoder

@ Indeed it does and that’s the idea

e By putting these two contradicting
objectives against each other we en-
sure that h is sensitive to only very
important variations as observed in
the training data.

o L(#) - capture important variations
in data

e Q(f) - do not capture variations in
data

@ Tradeoff - capture only very import-
ant variations in the data

Joydeep Chandra
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