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ABSTRACT
Deductive verification has gained paramount attention from both academia and industry. Although
intensive research in this direction covers almost all mainstream languages, the research community
has paid little attention to the verification of database applications. This paper proposes a compre-
hensive set of Verification Conditions (VCs) generation techniques from database programs, adapting
Symbolic Execution, Conditional Normal Form, and Weakest Precondition. The validity checking
of the generated VCs for a database program determines its correctness w.r.t. the annotated database
properties. The developed prototype DBverify based on our theoretical foundation allows us to in-
stantiate VC generation from PL/SQL codes, yielding to detailed performance analysis of the three
approaches under different circumstances. With respect to the literature, the proposed approach shows
its competence to support crucial SQL features (aggregate functions, nested queries, NULL values,
and set operations) and the embedding of SQL codes within host imperative language. For the chosen
set of benchmark PL/SQL codes annotated with relevant properties of interest, our experiment shows
that only 38% procedures are correct, while 62% procedures violate either all or part of the annotated
properties. The primary cause for the latter case is mostly due to the acceptance of runtime inputs in
SQL statements without proper checking.

1. Introduction
Static program verification is an integral part of the soft-

ware engineering process to formally prove or disprove the
correctness of programs without executing them. Acknowl-
edging its immense importance in critical systems, intensive
research in this direction has been taking place since its in-
ception 45 years ago [1] and a rich class of verification meth-
ods, such as Theorem Proving [2, 3, 4], Model Checking
[5, 6, 7], Process Algebra [8], have been successfully intro-
duced to formally verify the correctness of both finite-state
(e.g., hardware designs) and infinite-state (e.g., software pro-
grams) systems, guaranteeing that an implementation or de-
sign satisfies its specification.

Deductive reasoning, based on general-purpose theorem
proving, has emerged as a promising technique for software
verification. Intensive research in this direction has been tak-
ing placewith a coverage of almost all mainstream languages
[2, 4, 9, 10, 11]. Presently, the field of deductive verification
has reached a stage of maturity for its use in an industrial
setting [12]. In general, the deductive approach internally
employs a Verification Condition Generators (VCG) which
takes, as input, a program with specification and output a
number of proof obligations, called Verification Conditions
(VCs). The VCs are then sent to a backend proof tool for
validity checking [13]. The use of VCs provides a relatively
complete proof system with the use of a richer first-order
specification language.

Database applications play a pivotal role in every aspect
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of our daily lives. Their existence is realized everywhere,
ranging from simple web applications to even critical sys-
tems like banking, e-commerce, e-government, health-care,
etc. In many situations, organizations prefer to adopt third
party software modules and integrate them into their existing
database-driven systems, keeping the underlying databases
intact. Therefore, verification of such untrusted modules is
essential, as erroneous codes may lead to inconsistency in
the existing database data by violating their properties of in-
terest. Figure 1 exemplifies such a scenario considering a
budget allocation system: The attributes TA of the database
table BudgetTab stores total proposed budget for each de-
partment, whereas other attributes MP, EQ, CT, and CS
maintain its distribution under four headsManpower, Equip-
ment, Contingency, and Consumable respectively. The pro-
cedure DBprog extracts TA into the application variable z
for a given department y (at program point 6) and compares
it with the department’s available budget x (at program point
7). The statement at 10 adjusts the budget by subtracting an
equal fraction of the deficit amount (z - x) among four heads.
The specification containing the number of constraints or
properties in the form of CHECK constraints is specified as
part of the BudgetTab table definition, which must be re-
spected by the procedure DBprog on all executions. How-
ever, observe that as DBprog accepts run time inputs, the
update operation may lead to a violation of the specification
by reducing budget amount under some heads below their
minimum threshold specified in the CHECK constraints.
1.1. Motivation and Contributions

The presence of external database states, along with pro-
grams internal states, makes the verification task of database
applications more challenging and painstaking one. We ob-
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CREATE TABLE BudgetTab
(

Did INT PRIMARY KEY,
Dname VARCHAR(50),
TA NUMBER NOT NULL,
MP NUMBER NOT NULL,
EQ NUMBER NOT NULL,
CT NUMBER NOT NULL,
CS NUMBER NOT NULL,
// Set of properties
CHECK (MP >= 80000),
CHECK (EQ >= 60000),
CHECK (CT >= 10000),
CHECK (CS >= 5000)

) ;

(a) Table definition

1. CREATE OR REPLACE PROCEDURE DBprog (y int, x int) IS
2. z int;
3. m int;
4. n int;
5. BEGIN
6. SELECT TA INTO z FROM BudgetTab

WHERE Did = y;
7. if (z ⩾ x) then
8. m ∶= z − x;
9. n ∶= m∕4;
10. UPDATE BudgetTab SET MP = MP − n,

EQ = EQ − n, CT = CT − n,
CS = CS − nWHERE Did = y;

11. endif;
12. end;

(b) Stored procedure DBprog
Figure 1: Motivating Example

served that, although the database is an integral and indis-
pensable part of most computing environments today, the
research community has paid little attention in this direction.

On searching exhaustively in the literature, we find rel-
atively few numbers of attempts to verify database applica-
tions [14, 15, 16, 17, 18]. Let us briefly present them. The
proposed work in [17] manually translates the embedded
SQL code into SmpSL script language and then computes
verification conditions using the weakest precondition. Un-
fortunately, the approach suffers from a severe limitation in
terms of scalability to adopt it for real-world programs. Pre-
cisely, the verification process takes care of only the decid-
able fragment of the problem within the scope of the two-
variable first-order logic formula. As a result, the approach
fails to accept SQL codes in the presence of arithmetic op-
erations, aggregate functions, JOIN operations, etc. Pred-
icate abstraction-based integrity constraints verification of
extended version of O2 object-oriented database language
is proposed in [15]. In order to cope with the verification
complexity due to object referencing, the source code is
translated into an intermediate form on which the predicate
abstraction is applied. We observed that the intermediate
language is not expressive enough to accommodate impor-
tant database language features, such as nested query, arith-
metic expressions, aggregate functions, etc. Authors in [16]
propose integrity constraints verification for database appli-
cations using transformation operators. The proposed ap-
proach expressed every update operation as a predicate U =

Table 1
Comparative summary w.r.t. the literature

Proposals Properties NULL Aggregate
Functions

Arithmetic
Expressions

Language

Itzhaky et. al [17] T1, T2 No No No SQL +
Imperative

Baltopoulos et. al [14] T1-T3 Yes No Yes SQL
Malecha et. al [18] T2 No Yes No SQL
Benzaken et. al [15] T2 No No No O2Christiansen et. al [16] T2 No No No SQL

Our proposal T1-T5 Yes Yes Yes SQL +
Imperative

P (a⃗) and integrity constraints defined in a constraint theory
�. The function afterU (�) translates the constraint theory
to the weakest precondition of � with respect to the update
U, and a simplified formula is obtained by applying func-
tion SimpU (�). Verification of RDBMS specification and
implementation is proposed in [18] using Coq proof assis-
tant, which has expressive-power limited to relational alge-
bra only. The proposal in [14] allows transactions to write
in a functional language F# with database table-definitions
as refinement types, and verify them using the refinement-
type checker Stateful F7. In contrast to [18], where the main
concern is to address database implementation issues, the
approach in [14] mainly concerns bugs in the user-defined
transactions. A comparative summary w.r.t. the literature is
depicted in Table 1, where the existing proposals are com-
pared w.r.t. ours based on their potential to deal with the
type of properties, NULL values, aggregate functions, arith-
metic expressions, and language paradigms. The notations
T1-T5 represent the type of properties [19] as follows: T1:
Attribute-based (properties involving single attribute), T2:
Tuple-based (properties involving multiple attributes), T3:
Properties involving NULL values, T4: Properties involving
aggregate values, and T5: General Assertions (properties in-
volving both attributes and application variables).

This should be noticed that the applicability of the exist-
ing solutions in the literature is relatively poor due to their
inability to embrace most crucial SQL features such as ag-
gregate functions, nested queries, NULL values, arithmetic
expressions. Moreover, most of them focus only on the veri-
fication of SQL statements without the support of the imper-
ative language paradigm. In order to compensate the extra
complexity, the approaches follow a common step of trans-
lating SQL into an intermediate form, and therefore the ex-
pressiveness power of the intermediate language often im-
poses a limitation on the verification of SQL features. Usu-
ally, database applications are written in popular host pro-
gramming languages such as C, C++, Java, etc., with em-
bedded data access logic expressed declaratively in Struc-
tured Query Language (SQL) or SQL-derived programming
languages such as PL/SQL and T/SQL [20]. Therefore, ver-
ification of such applications, in contrast to the programs in
mainstream languages, demands a different treatment due to
the presence of database attributes along with program vari-
ables.

In order to facilitate the correctness proof of database
applications addressing the above-mentioned challenges, in
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this paper, we propose a comprehensive set of techniques
for the generation of Verification Conditions (VCs) from
database programs, adapting Symbolic Execution (SE),
Conditional Normal Form (CNF) and Weakest Precondition
(WPC). If the generated VCs for a given database program
can be discharged (i.e., proved valid by automated theorem
prover), then the program is guaranteed to be correct
w.r.t. the specified database properties. The developed
prototype DBverify based on our theoretical foundation
allows us to instantiate VC generation from a set of PL/SQL
benchmark codes [21, 22, 23, 24, 25, 26, 27, 28], yielding
to detailed performance analysis of these three approaches
under different circumstances. As reported in Table 1, with
respect to the literature, our approach is powerful enough
to verify SQL codes embedded within a host imperative
language, with a coverage of the above-mentioned crucial
SQL features and common database properties [19]. This is
worth mentioning that our work is primarily motivated by
[13, 29, 30].
To summarize, the main contributions in this paper are:

• We propose a comprehensive set of techniques to gen-
erate Verification Conditions (VCs) from database ap-
plications where database statements are embedded
into a host imperative language. The generated VCs
are then processed by an automated theorem prover
for their validity checking in order to prove the pro-
gram’s correctness. To this aim, we adapt Symbolic
Execution (SE), Conditional Normal Form (CNF),
andWeakest Precondition (WPC). The proposed tech-
niques allow to support important SQL features, in-
cluding aggregate functions, nested queries, NULL
values, and various operations (JOIN, UNION, IN-
TERSECT, and MINUS).

• We formalize the conversion of database programs
into a single assignment form, which facilitates the
verification process, especially in the case of Sym-
bolic Execution and Conditional Normal Form.

• We developDBverify, a verification tool implemented
in Python, based on our theoretical foundation, which
enables users to verify PL/SQL procedures under
three different approaches. DBverify makes use of
ANTLR parser [31] to generate VCs and Microsoft’s
Z3 theorem prover [32] to check the validity.

• Finally, we perform an experimental evaluation on a
set of benchmark PL/SQL codes [21, 22, 23, 24, 25,
26, 27, 28] under all three different approaches. We
present a detailed performance analysis based on the
experimental results and establish the effectiveness of
the approaches under various circumstances.

The rest of the paper is organized as follows: Section 2
recalls the abstract syntax of the languages under consider-
ation and introduces the conversion of database programs
into single assignment form. Section 3 presents in detail

all the proposed verification condition generation techniques
for database programs. The complexity analysis of the pro-
posed approaches and their correctness proofs are detailed
in Section 4. Section 5 presents DBverify, a prototype im-
plementation for the verification of PL/SQL codes. The ex-
perimental result on a set of PL/SQL benchmark codes with
detailed performance analysis is described in Section 6. Sec-
tion 7 presents threats to validity. Finally, Section 8 covers
the current state-of-the-art in this research line, and Section
9 concludes our work.

2. Database Language and Single Assignment
Form
In this section, we first recall from [33, 34] the abstract

syntax of database language under consideration. Then we
introduce its single assignment form, an intermediate lan-
guage representation, which serves as a backbone of some
approaches proposed in Section 3.
2.1. Abstract Syntax of Database Language

We consider a generic scenario of database applications
where SQL codes are embedded into another high-level host
language. To this aim, let us recall from [33, 34] the ab-
stract syntax of the language, which, for the sake of sim-
plicity in the theoretical formalism, supports SQL data ma-
nipulation languages hosted by imperative statements. This
is depicted in Table 2. The variables are categorized into
two: database attributes setVd and application variables set
Va. The arithmetic expressions e and boolean expressions
b are defined accordingly, considering the presence of either
v ∈ Va or a ∈ Vd or both along with possible arithmetic
and/or relational operators. Observe that g, r, f , and s repre-
sent group-by, distinct/all, order-by, and aggregate functions
respectively, where id is the identity function.

The SQL statements Qsel, Qupd , Qins, and Qdel consistof an action-part and a condition-part. For example, in the
update statement ⟨a⃗ ∶= UPDATE(e⃗), cond⟩, the first com-
ponent a⃗ ∶= UPDATE(e⃗) represents an action-part and the
second component cond represents a condition-part which
follows well-formed formulas in the first order logic. To ex-
emplify this, let us consider the statement “UPDATE emp SET
sal ∶= sal + bonus WHERE age ⩾ 60”, where “age ⩾ 60” rep-
resents condition part and ⟨sal⟩ ∶= UPDATE(⟨sal + bonus⟩)
represents action part. Therefore, its abstract syntax is de-
fined as ⟨⟨sal⟩ ∶= UPDATE(⟨sal + bonus⟩), age ⩾ 60⟩. In-
formally, the semantics of the update statement can be de-
scribed as follows: For the database tuples which satisfy the
condition-part cond, the values of the attributes ai ∈ a⃗ are
updated (in sequence) by ei ∈ e⃗. Similarly, given a query
“SELECT DISTINCT Dno, Pno, MAX(Sal) INTO rs FROM Tab
WHERE Sal > 1000 GROUP BY Dno, Pno HAVING MAX(Sal) <
4000 ORDER BY Dno". Its abstract syntax, according to Ta-
ble 2, is ⟨rs ∶= SELECT(f (e⃗), r(ℎ⃗(a⃗)), �, g(e⃗), cond)⟩,
where cond ≜ Sal > 1000, g(e⃗) ≜ GROUP BY(⟨Dno, Pno⟩),
r(ℎ⃗(a⃗)) ≜ DISTINCT(⟨DISTINCT(Dno), DISTINCT(Pno),
MAX◦ALL(Sal)⟩), � ≜ MAX(Sal) < 4000, and f (e⃗) ≜ ORDER
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BY ASC(⟨Dno⟩). In general, � filters a set of tuples from the
target table based on the satisfiability of cond and the re-
sult obtained after processing these tuples using g, �, ℎ, r, f
(if present) is stored in the resultset application variable rs.
The syntax of cond in the form of a⊗ (Qsel) supports nestedquery as well. Observe that, since insertion of a new tuple
does not require any condition to satisfy, the cond in Qins isby default false.
2.2. Assertion Language and Database Properties

As deductive verification is not fully automatic, this re-
quires annotating the source code by assume and assert ac-
cording to the specifications. The informal semantics of as-
sume and assert are as follows: assume  command ex-
cludes all computations which do not satisfy logical expres-
sion  , whereas assert  commands at different program
points specify the properties to be proven. A program is cor-
rect if, for every execution, whenever assert is reached, the
assertion  is satisfied by the current state. Since our verifi-
cation starts with the assumption that the initial database is in
consistent states w.r.t database properties, in order to reflect
this, we annotate our program by placing assume command
at the beginning of the code. As the database commands are
responsible for change database states, to detect any property
violation at more granularity level, we allow the annotation
by placing assert commands anywhere within the program,
especially after database commands.

We adopt the assertion language from [35], defined
in Equation 1, in order to support the following types
of database properties [19]: Attribute-based, Tuple-based,
Properties involving NULL and aggregate values, and Gen-
eral Assertions.
 ∶∶= true | false | a0 = a1 | a0 ⩽ a1 |  0 ∨  1 |  0 ∧  1 |

¬ |  0 ⇒  1 | ∀i. | ∃i. 
(1)

where i ranges over integer variables and a is the arithmetic
expression defined below:

a ∶∶= n | i | a0 + a1 | a0 − a1|a0 × a1
where n ∈ R. Readers may refer to [35] for the semantics
of the assertion language.

To exemplify various property types, let us consider a
database schema: Employee(ID, Name, DOJ, Experience,
Salary), Department (DID, Dname, MgrID, MgrStartDate).
The following assertions ‘Salary > 100 ∧ Salary ⩽ 4000’
and ‘Experience > 5 ∧ Salary > 2000’ represent attribute-
based and tuple-based properties respectively depending
upon the presence of one or more attributes in the assertions,
whereas the assertion ‘MgrStartDate > DOJ ∧ Experience
> y’ represents a general assertion due to the involvement of
both database attributes and application variables. The ex-
amples of assertions involving NULL and aggregate values
are ‘DID NUMBER NOT NULL’, ‘Avg(Salary) > 2500’ respec-
tively.
2.3. Single Assignment Form of Database

Language
Single Assignment [36] is a semantically equivalent rep-

resentation of a program in which every new assignment to

variable results into a new version and each version denotes a
different logical variable. This ensures that, in single assign-
ment, each variable is defined only once before being used.
A versioned variable is defined by the original name of the
variable associated with an integer subscript representing its
current version.

As logical encoding (known as verification condition
(VC )) of database programs is a prime objective of
deductive-based verification. Let us demonstrate on a simple
code snippet how a single assignment form of program code
leads to the generation of the correct form of VCs capturing
the actual program semantics. Given the code fragment P1and the specification  1 depicted in Figures 2(a) and 2(b).
The logical expression f ≜ x ⩾ 0 ∧ y = x + 1 ∧ x =
x + 15 ∧ w = x + 9 ⟹ w ≥ 0 represents a VC of the
annotated code in Figure 2(c).

However, observe that, although P1 is correct w.r.t.  1,this can never be captured due to the unsatisfiability of f be-
cause x = x + 15 is always unsatisfiable. To make f satisfi-
able, one has to differentiate between the variable x appears
at the left and right sides of the assignment operator (:=).
The best way to do this is to convert program codes into a
single assignment form [13].

y := x + 1;
x := x + 15;
w := x + 9;

(a) Code fragment
P1

assume x ⩾ 0;
assert w ⩾ 0;

(b) Specification  1

assume x ⩾ 0;
y := x + 1;
x := x + 15;
w := x + 9;
assert w ⩾ 0;

(c) P1 annotated
with  1

Figure 2: A simple code fragment and its annotation

Let us nowmake a quick journey through a single assign-
ment form of imperative statements, and then we propose the
same for our database language under consideration.
Single Assignment Form of Imperative Statements
[36, 37]. As the prime objective in single assignment form
is to ensure single definitions for all variables, in the case of
an assignment statement, a new version for the defined vari-
able appeared on the left side of the assignment operator is
introduced. For example, consider the code: {read x; x := x
+ 1;}, its equivalent single assignment form is {read x0; x1:= x0 + 1;}, where x0 and x1 denote the initial version and
the current version of x respectively. In case of conditional
statements where two or more control flow paths merge at a
point, the single assignment property may get violated since
multiple definitions of a variable may reach at that merging
point. To solve this problem, imaginary assignments are in-
troduced at the merging points by using �-functions and the
resultant representation is called Static Single Assignment
(SSA) form [37]. In general, a �-function has arguments
corresponding to each incoming control flow path: the itℎ
argument of a �-function is the incoming value along the itℎ
path. For example, the SSA form of the code fragment P2in Figure 3(a) is depicted in Figure 3(b). Note that, in or-
der to make such SSA form executable, the �-function can
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Table 2
Abstract Syntax of Database Language [33, 34]

———————————————————————————————————————————————————————————————–

Constant: c ∈ R (Set of Numerical Constants)

Variables: v ∈ Va (Set of Application Variables)
a ∈ Vd (Set of Database Attributes)
Var ∶∶= Va ∪Vd
a⃗ ∶∶= ⟨a1, a2, … , an⟩

(Ordered sequence of attributes)

Expressions: e ∈ E (Set of Arithmetic Expressions)
e ∶∶= c | v | a | e ⊕ e, where ⊕ ∈ {+, -, *, /}
b ∈ B (Set of Boolean Expressions)
b ∶∶= true | false | e ⊙ e | b ∨ b | b ∧ b | ¬b

where ⊙ ∈ {<,≤, >,≥,=,≠}
SQL Conditions:
(Well-formed first
order formula) � ∈ T (Set of Terms)

� ∶∶= c | a | v | fn(�1, �2, ..., �n)
where fn is an n-ary function.

af ∈ Af (Set of Atomic Formulas)
af ∶∶= �1 == �2 | Rn(�1, �2, ..., �n)

where Rn(�1, ..., �n) ∈ {true, false}
� ∈ W (Set of Well-Formed Formula)
� ∶∶= af | ¬� | �1 ∨ �2 | �1 ∧ �2
cond ∶∶= true | false | � | a ⊗ (Q),

where ⊗ ∈ {IN, NOT IN, ANY, EXIST,
NOT EXIST}

SQL Functions: g(e⃗) ::= GROUP BY(e⃗), where e⃗ = ⟨e1, ..., en | ei ∈ E⟩
r ::= DISTINCT | ALL
s ::= AVG | SUM | MAX | MIN | COUNT | id
ℎ(e) ::= s◦r(e)
ℎ⃗(x⃗) ::= ⟨ℎ1(x1), ..., ℎn(xn)⟩, ℎ⃗ = ⟨ℎ1, ..., ℎn⟩

and x⃗ = ⟨x1, ..., xn | xi = e ∨ xi =∗⟩
f (e⃗) ::= ORDER BY ASC(e⃗) | ORDER BY DESC(e⃗) | id

Commands: Q ∈ Q (Set of SQL Statements)
Q ::= Qsel | Qupd | Qins | Qdel
Qsel ::= ⟨rs := SELECT

(

f (e⃗), r(ℎ⃗(x⃗)), �, g(e⃗)
)

, cond⟩
Qupd ::= ⟨a⃗ ∶= UPDATE(e⃗), cond⟩
Qins ::= ⟨a⃗ ∶= INSERT(e⃗), false⟩
Qdel ::= ⟨a⃗ ∶= DELETE(), cond⟩
stmt ∈ C (Set of Commands)
stmt ::= Q | v ∶= e | skip | if b then stmt endif

| read v | if b then stmt1 else stmt2 endif
| stmt1; stmt2

Programs:  ∈ P (Set of database programs)
 ::= stmt | stmt ; 

———————————————————————————————————————————————————————————————–

equivalently be defined in terms of the ternary operator. For
example, the statement x3 := �(x1, x2); in Figure 3(b) can
be defined as x3 := x0 > 0 ? x1 : x2;.

read x;
if x > 0 then

x := x − 1;
else

x := x + 1;
endif
y = x + 5;

(a) Code fragment
P2

read x0;
if x0 > 0 then

x1 := x0 − 1;
else

x2 := x0 + 1;
endif
x3:= �(x1, x2);
y1 = x3 + 5;

(b) SSA form of P2

read x0;
if x0 > 0 then

x1 := x0 − 1;
x3 := x1;

else
x2 := x0 + 1;
x3 := x2;endif

y1 := x3 + 5;

(c) DSA form of P2

Figure 3: If-else statement and its single assignment form

Dynamic Single Assignment (DSA) form is an alterna-
tive representation where variables are defined along all con-
trol paths to ensure that a single definition reaches towards
the merging points. Since the meaning of a �-function is a
mapping of all incoming values to a single name (say x3),it is equivalent to place a copy of x3 at the end of each
predecessor-block. The copy moves the values correspond-
ing to the appropriate �-function argument into x3. This
can be seen as a destruction of a �-function into its direct
predecessor-blocks in SSA form [37]. For example, the code
snippet in Figure 3(c) depicts the equivalent DSA form of P2.Similarly, Figure 4 highlights the SSA and DSA treatments
of if-statement.
Single Assignment Form of SQL Statements. Let us
now extend the notions of SSA and DSA to the case of
database applications. To exemplify this, consider the
UPDATE statement Q in Figure 5(a). Treating Q in a simi-
lar way as in the case of imperative statements, we get its

if (x ⩾ 0) then
y := y − 5;

endif
x := y;

(a) Code fragment
P3

if (x0 ⩾ 0) then
y1 := y0 − 5;

endif
y2 := �(y1, y0);
x1 := y2;

(b) SSA form of P3

if (x0 ⩾ 0) then
y1 := y0 − 5;
y2 := y1;

else
y2 := y0;endif

x1 := y2;

(c) DSA form of P3

Figure 4: if-statement and its single assignement form

single assignment form depicted in Figure 5(b). Note that,
in the conversion process, we assume the existence of a ghost
database (denoted by cap(̂ ) on table names), which contains
all versions of the attributes of the original database. This is
to observe that the resultant single assignment form would
be wrong because it reflects only a part of the database state
for which a0 > 50 ∧ a0 < 100 holds. In order to capture thecomplete database state, we add an auxiliary UPDATE state-
ment by considering the negation of cond which covers the
other part of the database state. The correct single assign-
ment form ofQ is depicted in Figure 5(c). We show this fact
pictorially in Figure 6.

The following formula computed from the correct single
assignment form of Q represents a valid VC:

(b1 = b0 − 10 ∧ a0 > 5 ∧ a0 < 100) ∨ (b1 = b0 ∧ ¬(a0 > 5 ∧ a0 < 100))

Similarly, we can define the single assignment form of
INSERT and DELETE by adding auxiliary UPDATE statements
before them in order to reflect other parts of the database
state also. In these two cases, we have to consider the ver-
sioning of all attributes in the table which are referred by the
statements. Observe that, the SELECT statement changes the
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UPDATE T SET b = b − 10 WHERE a > 50 AND a < 100 ;

(a) UPDATE statement Q

UPDATE T̂ SET b1 = b0−10 WHERE a0 > 50 AND a0<100;

(b) Wrong single assignment form of Q

UPDATE T̂ SET b1 = b0 WHERE ¬(a0 > 50 AND a0<100);
UPDATE T̂ SET b1 = b0 − 10WHERE a0 > 50 AND a0<100;

(c) Correct single assignment form of Q

Figure 5: Single assignment form of UPDATE statement
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(a) Initial state of table
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(b) State of T w.r.t. sin-
gle assignment form in
Figure 5b 
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(c) State of T w.r.t. sin-
gle assignment form in
Figure 5c

Figure 6: State representation of the table T w.r.t. Q, and
their single assignment form in Figure 5

version of the application result-set variables only.
Treating SQL statements under if- and if-else state-
ments. Like imperative language, the presence of UPDATE
or DELETE or INSERT statement in if- and if-else requires
special treatment to convert them into SSA or DSA form.
The code snippets given in Figure 7 illustrate this.

Observe that the �-function �d in the case of multi-
definitions of database attributes under SSA form can be de-
fined in terms of UPDATE controlled by if or if-else. For
example, b2 := �d(b1, b0); at program point 3 in Figure 7(b)
can be defined as:

if z0 ⩾ 3 then
UPDATE T̂1 SET b2 = b1;

else
UPDATE T̂1 SET b2 = b0;

endif

1. if z ⩾ 3 then
2. UPDATE T1 SET b = b − 10 WHERE a = y;

endif;
3. SELECT b INTO w FROM T1 WHERE a > 5;

⋮
19. if y > 60 then
20. DELETE FROM T2 WHERE d = y;

else
21. INSERT INTO T2 (c, d) VALUES (p, q);

endif;
22. SELECT d INTO x FROM T2 WHERE c > 5;

(a) Original code fragment P4

1. if z0 ⩾ 3 then
UPDATE T̂1 SET b1 = b0 WHERE ¬(a0 = y0);

2. UPDATE T̂1 SET b1 = b0 − 10 WHERE a0=y0;endif;
3. b2 := �d (b1, b0);
4. SELECT b2 INTO w1 FROM T̂1 WHERE a0 > 5;

⋮
19. if y0 > 60 then

UPDATE T̂2 SET c1=c0, d1=d0 WHERE
¬(d0=y0);

20. DELETE FROM T̂2 (c0, d0) WHERE d0 = y0;
else

UPDATE T̂2 SET c2 = c0, d2 = d0;
21. INSERT INTO T̂2 (c2, d2) VALUES (p0, q0);endif;
22. c3 := �d (c1, c2);23. d3 := �d (d1, d2);
24. SELECT d3 INTO x1 FROM T̂2 WHERE c3 > 5;

(b) SSA form of P4

1. if z0 ⩾ 3 then
UPDATE T̂1 SET b1 = b0 WHERE ¬(a0 = y0);

2. UPDATE T̂1 SET b1 = b0 − 10 WHERE a0=y0;
3. UPDATE T̂1 SET b2 = b1;

else

4. UPDATE T̂1 SET b2 = b0;endif;
5. SELECT b2 INTO w1 FROM T̂1 WHERE a0 > 5;

⋮
19. if y0 > 60 then

UPDATE T̂2 SET c1=c0, d1=d0 WHERE
¬(d0=y0);

20. DELETE FROM T̂2 (c0, d0) WHERE d0 = y0;
21. UPDATE T̂2 SET c3 = c1, d3 = d1;

else

UPDATE T̂2 SET c2 = c0, d2 = d0;
22. INSERT INTO T̂2 (c2, d2) VALUES (p0, q0);
23. UPDATE T̂2 SET c3 = c2, d3 = d2;endif;
24. SELECT d3 INTO x1 FROM T̂2 WHERE c3 > 5;

(c) DSA form of P4

Figure 7: SQL statements and their single assignment form
under if- and if-else

On the other hand, in the case of DSA of database code,
the else-part is introduced whenever necessary (for example,
statement 4 in Figure 7(c)) and �-functions are destructed
into their predecessor-blocks (for instance, by introducing
statements 3, 4, 21, and 23 in Figure 7(c)), which ensure the
single definition of attributes to flow towards the merging
points.

Since our proposed verification approaches make use of
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———————————————————————————————————————————————————————————————–
I : Set of natural numbers
C : Set of Commands
Cdsa : Set of Commands in DSA form

Versioning Function : � ∈ Σ ≜ Var → I

Initial Version : �0 ≜ Var → {0}, where �0 ∈ Σ
DSA Translation Function : TranDSA ≜ C × Σ → Cdsa × Σ

———————————————————————————————————————————————————————————————–

TranDSA[[c]]� ≜ ⟨c, �⟩ TranDSA[[v]]� ≜ ⟨vi, �⟩ wℎen �(v) = i TranDSA[[a]]� ≜ ⟨ai, �⟩ wℎen �(a) = i

TranDSA[[e]]� ≜ ⟨∀x ∈ Var[[e]] ∶ e
q
TranDSA[[x]]∕x

y
, �⟩ TranDSA[[b]]� ≜ ⟨∀x ∈ Var[[b]] ∶ b

q
TranDSA[[x]]∕x

y
, �⟩

TranDSA[[�]]� ≜ ⟨∀x ∈ Var[[�]] ∶ �
q
TranDSA[[x]]∕x

y
, �⟩ TranDSA[[a ⊗ (Qsel)]]� ≜ ⟨TranDSA[[a]]� ⊗TranDSA[[(Qsel)]]�, �⟩

TranDSA[[assume �]]� ≜ ⟨assume TranDSA[[�]]�, �⟩ TranDSA[[assert �]]� ≜ ⟨assert TranDSA[[�]]�, �⟩

TranDSA[[v ∶= e]]� ≜ ⟨TranDSA[[v]]�′ ∶= TranDSA[[e]]�, �′⟩, wℎere �′ = �[[v↦ �(v) + 1]]

TranDSA[[⟨a⃗ ∶= UPDATE(e⃗), cond⟩]]� ≜ TranDSA[[⟨a⃗ ∶= UPDATE(a⃗) ↷ UPDATE(e⃗), ¬cond ↷ cond⟩]]

≜
⟨

⟨TranDSA[[a⃗]]�′ ∶= UPDATE(TranDSA[[a⃗]]�)↷ UPDATE(TranDSA[[e⃗]]�),

TranDSA[[¬(cond)]]� ↷ TranDSA[[cond]]�⟩, �′
⟩

; wℎere �′ = �[[a⃗ ↦ �(a⃗) + 1]]

TranDSA[[⟨a⃗ ∶= ⟨INSERT(e⃗), false⟩]]� ≜ TranDSA[[a⃗ ∶= UPDATE(a⃗)↷ INSERT(e⃗), true↷ false⟩]]

≜
⟨

⟨TranDSA[[a⃗]]�′ ∶= UPDATE(TranDSA[[a⃗]]�)↷ INSERT(TranDSA[[e⃗]]�),

true↷ false⟩, �′
⟩

; wℎere �′ = �[[a⃗ ↦ �(a⃗) + 1]]

TranDSA[[⟨a⃗ ∶= DELETE(), cond⟩]]� ≜ TranDSA[[⟨a⃗ ∶= ⟨UPDATE(a⃗i) ↷ DELETE(), ¬cond ↷ cond⟩]]

≜
⟨

⟨TranDSA[[a⃗]]�′ ∶= UPDATE(TranDSA[[a⃗]]�)↷ DELETE(),TranDSA[[¬(cond)]]� ↷

TranDSA[[cond]]�⟩, �′
⟩

; wℎere �′ = �[[a⃗ ↦ �(a⃗) + 1]]

TranDSA[[⟨rs ∶= SELECT(f (e⃗), r(ℎ⃗(x⃗)), �, g(e⃗)), cond⟩]]� ≜
⟨

⟨TranDSA[[rs]]�′ ∶= SELECT(f (TranDSA[[e]]�), r(ℎ⃗(TranDSA[[x⃗]]�)),TranDSA

[[�]]�, g(TranDSA[[e]]�)), TranDSA[[cond]]�⟩, �′
⟩

, wℎere �′ = �[[a⃗ ↦ �(a⃗) + 1]]

TranDSA[[if b then stmt endif]]� ≜ if TranDSA[[b]]� then TranDSA[[stmt;Destruct(stmt)]]� else

TranDSA[[Destruct(stmt)]]� endif

TranDSA[[if b then stmt1 else stmt2 endif]]� ≜ if TranDSA[[b]]� then TranDSA[[Sync(stmt1, stmt2); Destruct(stmt1)]]� else

TranDSA[[Sync(stmt2, stmt1); Destruct(stmt2)]]� endif

TranDSA[[stmt1; stmt2]]� ≜ ⟨stmtdsa1 ; stmtdsa2 , �′′⟩ wℎere,TranDSA[[stmt1]]� = ⟨stmtdsa1 , �′⟩

and TranDSA[[stmt2]]�′ = ⟨stmtdsa2 , �′′⟩

———————————————————————————————————————————————————————————————–

Figure 8: DSA Translation Function TranDSA

only DSA form whenever applicable, we restrict our discus-
sions to DSA translation only in the subsequent sections. Let
us now formalize DSA translation of the database language.
Let � ∈ Σ be a function which maps program variables to
their corresponding versions, defined as: �: Var → I where
I is the set of natural numbers. The initial version is de-
fined by �0: Var →{0}. We define the function TranDSA
: C × Σ → Cdsa × Σ for our language which maps a given
command c ∈ C w.r.t. current variables-version � ∈ Σ into
its equivalent DSA form cdsa ∈ Cdsa resulting into a new
variables-version �′ ∈ Σ. Figure 8 depicts the detailed defi-
nition of TranDSA for various components of our language
under consideration. Observe that TranDSA renames vari-
able v or attribute a into their corresponding versioned form

vi or ai w.r.t. current version � where �(v) = i or �(a) =
i. In the case of assignment statements, the current versions
of defined variables are incremented by 1 resulting into an
updated version �′.

Let us now introduce a new syntactic form:
⟨a⃗ := act1 ↷ act2, cond1 ↷ cond2⟩

which indicates that the action-part act1 on a⃗ for the tuples
satisfying cond1 will be followed by another action act2 on
the same a⃗ for the tuples satisfying cond2. For example,
UPDATE, INSERT and DELETE statements under this syntac-
tic form are represented as:

⟨a⃗ ∶=UPDATE(a⃗)↷ UPDATE(e⃗), ¬cond ↷ cond⟩
⟨a⃗ ∶=UPDATE(a⃗)↷ INSERT(e⃗), true↷ false⟩
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⟨a⃗ ∶=UPDATE(a⃗) ↷ DELETE(), ¬cond ↷ cond⟩

Since the DSA forms of UPDATE, DELETE, and INSERT add
an auxiliary UPDATE statement before them in order to cap-
ture the definition of attributes for all tuples, we use this syn-
tactic form in the definition of TranDSA. Observe that, like
assignment statements, in these cases also � is modified to
�′ by increasing the versions of defined attributes by 1. In
the case of conditional statements if- and if-else, we use two
functions Destruct and Sync, defined below:

Destruct(v ∶= e) ≜ v ∶= v

Destruct(⟨a⃗ ∶= UPDATE(e⃗), cond⟩) ≜ ⟨a⃗ ∶= UPDATE(a⃗), true⟩

Destruct(⟨a⃗ ∶= ⟨INSERT(e⃗), false⟩) ≜ ⟨a⃗ ∶= ⟨UPDATE(a⃗), true⟩

Destruct(⟨a⃗ ∶= DELETE(), cond⟩) ≜ ⟨a⃗ ∶= UPDATE(a⃗), true⟩

For Other Statements stmt ∶ Destruct(stmt) ≜ skip

Destruct(stmt1; stmt2) ≜ Destruct(stmt1); Destruct(stmt2)

Sync(stmti, stmtj ) ≜ stmti;Destruct(stmtj − stmti)

where (stmtj - stmti) represents only those defining state-
ments in stmtj which are not common to both stmti and stmtj .Note that the task of the Sync function is to make variables
definitions in both if- and else-blocks consistent by adding
a new part (stmtj - stmti) only after applying Destruct on it
ensuring that no change in the values of the variables takes
place before and after their inclusion. For example, given
the following if-else code snippet “if (x ⩾ 0) then 1○ UPDATE
T SET a ∶= a + 10 WHERE c > 10 AND c < 20; else 2○ UPDATE
T SET b ∶= b - 15 WHERE c > 25 AND c < 35; endif”. Accord-
ing to the definition of TranDSA in case of if-else, the use of
Sync andDestruct functions yields the following DSA form:

if x0 > 0 then
1○ UPDATE T̂ SET a1 = a0 + 10WHERE c > 10 AND c < 20;

UPDATE T̂ SET a1 = a0 WHERE ¬(c > 10 AND c < 20);

1a○ UPDATE T̂ SET b2 = b0;
1b○ UPDATE T̂ SET a2 = a1;
else
2○ UPDATE T̂ SET b1 = b0 − 15WHERE c > 25 AND c < 35;

UPDATE T̂ SET b1 = b0 WHERE ¬(c > 25 AND c < 35);

2a○ UPDATE T̂ SET a2 = a0;
2b○ UPDATE T̂ SET b2 = b1;
endif

Observe that Sync( 1○, 2○) introduces statement 1a○ under the
if-block of the resultant DSA form, followed by statement 1b○
which is obtained by Destruct( 1○). Similarly, statements 2a○
and 2b○ are introduced under else-block.

In general, TranDSA can be implemented based on the
standard DSA construction algorithm [37] with an extension
to cover SQL statements.

We are now in a position to propose Verification Con-
dition Generation techniques, namely symbolic execution,
conditional normal form, and weakest precondition, in the
subsequent section.

3. Verification Condition Generation
Techniques
As we mentioned earlier that the fundamental step in-

volved in the deductive-based approach is to generate VCs
from program codes annotated with specifications. Once
VCs are generated, they are fed to the theorem provers to
check their validity which proves the correctness of the
programs w.r.t. given specifications. Although VCs have
been widely used in some well-known verification tools
[38, 39, 40], they have not been systematically analysed by
the research community. Authors in [13, 29, 30] first re-
visited various VC generation techniques for iteration free
imperative programs and performed a detailed comparison
in term of efficiency. To the best of our knowledge, this
has never been explored in the realm of database applica-
tions where database statements are embedded within a gen-
eral purpose host imperative language. Our main objective
in this section is to extend these VC generation techniques,
namely symbolic execution, conditional normal form and
weakest precondition, to the case of database applications,
enabling to formally verify underlying database properties
and to perform a detailed comparative analysis with respect
to performance.
3.1. Symbolic Execution

The very first and simplest method to verify the correct-
ness of a program is to generate logical formulas along all
execution paths of a program using symbolic execution, tak-
ing the given specification into account. Symbolic execution
considers symbolic input values (rather than concrete val-
ues) and therefore execution proceeds along all control paths
covering the entire execution space of the programs. Notice
that the method produces one VC for each assert command
in a path and each VC encodes only the part of the program
that is relevant for that assert command. Therefore, there ex-
ists a one-to-one relation between the execution path and the
VC. the validity of each logical formula certifies that execu-
tion going through the corresponding path meets the asser-
tions, and consequently, successful validation of all formulas
ensures the program’s correctness w.r.t. the given specifica-
tion. This technique has an advantage from the point of view
of traceability: an invalid VC immediately identifies the ex-
ecutions that may violate a property.

Let us now formalize below two functions Path and
VCse. Note that, in order to indicate a statement in DSA
form, we use either the superscript dsa or the subscripts i
and i + 1 as the current version and the updated version re-
spectively. We denote by ⟨a⃗i+1 := act1i ↷ act2i , cond

1
i ↷

cond2i ⟩ the DSA form of either UPDATE or DELETE or INSERT
as follows:

⟨a⃗i+1 ∶=UPDATE(a⃗i)↷ UPDATE(e⃗i), ¬condi ↷ condi⟩
⟨a⃗i+1 ∶=UPDATE(a⃗i)↷ INSERT(e⃗i), true↷ false⟩
⟨a⃗i+1 ∶=UPDATE(a⃗i)↷ DELETE(), ¬condi ↷ condi⟩

The functions Path and VCse are defined below:
(1) LetΦ be a logical encoding of an execution path � up
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—————————————————————————————————————————————————————

Path(Φ, skip) = Φ Path(Φ, assume �dsa) = Φ ∧ �dsa Path(Φ, vi+1 ∶= ei) = Φ ∧ vi+1 = ei Path(Φ, assert �dsa) = Φ ∧ �dsa

Path(Φ, ⟨rsi+1 ∶= SELECT(f (e⃗i), r(ℎ⃗(a⃗i)), �′, g(e⃗i)), condi⟩) = Φ ∧ ((condi ∧ rsi+1 = F(a⃗i)) ∨ (¬condi ∧ rsi+1 = rsi))

Path(Φ, ⟨a⃗i+1 ∶= act1i ↷ act2i , cond
1
i ↷ cond2i ⟩) = Path(Φ, ⟨a⃗i+1 ∶= act1i , cond

1
i ⟩) ∨ Path(Φ, ⟨a⃗i+1 ∶= act2i , cond

2
i ⟩)

Path(Φ, ⟨a⃗i+1 ∶= UPDATE(e⃗i), condi⟩) = Φ ∧ (condi ∧
|a⃗i+1 |
⋀

j=1
aji+1 = e

j
i ) Path(Φ, ⟨a⃗i+1 ∶= INSERT(e⃗i), false⟩) = Φ ∧ (

|a⃗i+1 |
⋀

j=1
aji+1 = e

j
i )

Path(Φ, ⟨a⃗i+1 ∶= DELETE(), condi⟩) = Φ ∧ (¬condi ∧
|a⃗i+1 |
⋀

j=1
aji+1 = a

j
i ) Path(Φ, stmtdsa1 ; stmtdsa2 ) = Path(Path(Φ, stmtdsa1 ), stmtdsa2 )

Path(Φ, if bi then stmtdsa1 else stmtdsa2 ) = Path(Φ ∧ bi, stmtdsa1 ) ∪ Path(Φ ∧ ¬bi, stmtdsa2 )

—————————————————————————————————————————————————————
Figure 9: Encoding of database statements into logical formula

to program point l. On encountering stmtdsa at pro-
gram point l + 1 along the path, the function Path(Φ,
stmtdsa) returns a logical formula that encodes � up to
the program point l + 1. Figure 9 defines the function
Path for all statements in our language. Observe that
the helper function F(.) represents the composition of
functions g, �, ℎ, r, f (if present) in SELECT.

(2) Given a program in the form of a sequence of state-
ments, the function VCse recursively collects the log-
ical encoding of all program paths by invoking the
auxiliary function Path defined above. Finally, on en-
countering an assert statement, the function VCse re-
turns VC with an implication to the assert constraints.
This is defined in Figure 10.

—————————————————————————

VCse(Φ, stmtdsa1 ; stmtdsa2 ) = VCse(Φ, stmtdsa1 ) ∪ VCse(Path(Φ,

stmtdsa1 ), stmtdsa2 )

VCse(Φ, if b then stmtdsa1 else stmtdsa2 ) =VCse(Φ ∧ b, stmtdsa1 )∪

VCse(Φ ∧ ¬b, stmtdsa2 )

VCse(Φ, assert �dsa) = Φ ⇒ �dsa

VCse(Φ, assume �dsa) = ∅
VCse(Φ, vi+1 ∶= ei) = ∅ VCse(Φ, skip) = ∅

VCse(Φ, Qdsa
sel ) = ∅ VCse(Φ, Qdsa

upd ) = ∅

VCse(Φ, Qdsa
ins ) = ∅ VCse(Φ, Qdsa

del ) = ∅

—————————————————————————

Figure 10: VC Generation using symbolic execution

The overall algorithm of symbolic execution-based VC gen-
eration is depicted in Algorithm 1. CFG(dsa) denotes
control-flow graph of dsa.
Let us now illustrate the function VCse on our motivating
example in Figure 1.
Example 1. Given the code snippet DBprog in Figure 1, its
DSA form annotated with assume and assert statements is
shown in Figure 11. Initially Φ is the empty set ∅. Consider
the sequence of statements ⟨6; 7; 8; … ⟩ inDBprogdsa. Ac-
cording to the definition of VCse, applying Algorithm 1 on
the sequence of statements, VCse(Φ, ⟨6; 7; 8; … ⟩) results

Algorithm 1: SE-based VCG
Input: DSA form dsa of annotated database

program 
Output: A set of VCs

1 X := ∅;
2 for each path n1 n2 … nl ∈ CFG(dsa) do
3 Φ := ∅;

// Let S = s1; s2;… ; sn; where si is the

statement in dsa corresponding to
node ni

4 X := X ∪ VCse(Φ, S);
5 Return X;
6 End

in VCse(Φ, 6) ∪ VCse(Path(Φ, ⟨ 6 ⟩), ⟨ 7; 8; … ⟩) which
initiates recursive calls on the subproblems. The auxiliary
function Path accumulates logical formulas along the pro-
gram paths, and finally the function VCse, on encountering
the assert statement at program point 19, generates the fol-
lowing set of VCs.

VC1 ∶ ((MP0 ⩾ 80000 ∧ EQ0 ⩾ 60000 ∧ CT0 ⩾ 10000 ∧ CS0 ⩾ 5000)
∧ ((z1 == TA0 ∧ Did0 == y0) ∨ (z1 == z0 ∧ ¬(Did0 == y0)))∧
(z1 ⩾ x0 ∧ m1 == z1 − x0 ∧ n1 == (m1∕4)) ∧ ((MP1 == MP0 − n1
∧ EQ1 == EQ0 − n1 ∧ CT1 == CT0 − n1 ∧ CS1 == CS0 − n1
∧ Did1 == x0) ∨ (MP1 == MP0 ∧ EQ1 == EQ0 ∧ CT1 == CT0
∧ CS1 == CS0 ∧ ¬(Did1 == x0))) ∧ (m2 == m1 ∧ n2 == n1)∧
(MP2 == MP1 ∧ EQ2 == EQ1 ∧ CT2 == CT1 ∧ CS2 == CS1))
⇒ (MP2 ⩾ 80000 ∧ EQ2 ⩾ 60000 ∧ CT2 ⩾ 10000 ∧ CS2 ⩾ 5000)

VC2 ∶ ((MP0 ⩾ 80000 ∧ EQ0 ⩾ 60000 ∧ CT0 ⩾ 10000 ∧ CS0 ⩾ 5000)∧
((z1 == TA0 ∧ Did0 == y0) ∨ (z1 == z0 ∧ ¬(Did0 == y0)))∧
¬(z1 ⩾ x0) ∧MP2 == MP0 ∧ EQ2 == EQ0 ∧ CT2 == CT0∧
CS2 == CS0 ∧ m2 == m0 ∧ n2 == n0) ⇒ (MP2 ⩾ 80000∧
EQ2 ⩾ 60000 ∧ CT2 ⩾ 10000 ∧ CS2 ⩾ 5000)

The invalidity of VC1 in some cases (for example, z1 = 20,
x0 = 12, MP2 = 79999, EQ2 = 59999, CT2 = 9999, CS2
= 4999) indicates that DBprog does not respect the given
specification all the time. In particular, the violation hap-
pens due to statement 10 in DBprog where attribute values
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are subtracted by some amount which is influenced by a run-
time input.

1. CREATE OR REPLACE PROCEDURE DBprog (y0 int, x0 int)
IS

2. z0 int;
3. m0 int;
4. n0 int;
5. BEGIN
6. assume MP0 ⩾ 80000 and EQ0 ⩾ 60000 and CT0 ⩾ 10000 and

CS0 ⩾ 5000;
7. SELECT TA0 INTO z1 FROM Budget WHERE Did0= y0;
8. if z1 ⩾ x0 then
9. m1 := z1 − x0;
10. n1 := m1/4;
11. UPDATE Budget SET MP1 = MP0−n1, EQ1 = EQ0−n1,

CT1 = CT0−n1, CS1 = CS−n1 WHERE Did0 = x0;
UPDATE Budget SET MP1 = MP0, EQ1 = EQ0, CT1 =
CT0, CS1 = CS0 WHERE ¬(Did0 = x0);

12. m2 := m1;
13. n2 := n1;
14. UPDATE Budget SET MP2 = MP1, EQ2 = EQ1,

CT2 = CT1, CS2 = CS1;
else

15. UPDATE Budget SET MP2 = MP0, EQ2 = EQ0,
CT2 = CT0, CS2 = CS0;

16. m2 := m0;
17. n2 := n0;
18. endif;
19. assert MP2 ⩾ 80000 and EQ2 ⩾ 60000 and CT2 ⩾ 10000 and

CS2 ⩾ 5000;
20. end;

Figure 11: DBprogdsa: DSA form of DBprog.

Limitation: The major problem of symbolic execution-
based VCG is that the number of VCs will be exponential
in the worst case scenario. For instance, a program with n
conditional statements may result in O(2n) number of VCs.
3.2. Conditional Normal Form

We have seen in the previous section that VCG using
symbolic execution leads to an exponential number of VCs
in the worst case scenario. To overcome this problem, we
now describe the second method of VCG which was first
used in Bounded Model Checking of software (BMC) [39]
as a way to unroll loops avoiding path enumerations. In the
BMC technique, the transformation of iteration free DSA
programs form is basically guided by the following three
rules [39]:

R1 ∶ if (bdsa) stmtdsa1 else stmtdsa2 ⇒ if (bdsa) stmtdsa1 ; if (¬bdsa) stmtdsa2 ;

R2 ∶ if(bdsa) {stmtdsa1 ; stmtdsa2 }⇒ if (bdsa) stmtdsa1 ; if (bdsa) stmtdsa2 ;

R3 ∶ if (bdsa1 ){if (bdsa2 ) stmtdsa} ⇒ if (bdsa1 ∧ bdsa2 ) stmtdsa

The first rule R1 states that branches of conditional state-ments can be sequentialized. The second rule R2 states thatconditions can be distributed through the sequence of state-
ments present in the body of conditional statements. The
third rule R3 states that nested conditions can be combined
together. Observe that the above rules rewrite a given DSA
program into another semantically equivalent form where
every statement stmtdsa is guarded by a condition bdsa. If a
stmtdsa is not in the body of any conditional statement then
it will be guarded by true. This representation of the DSA
programs is known as Conditional Normal Form (CNF).

Let us now define the CNF-based VCG for our database
language by following the below steps:

(1) Transformation of database program dsa in DSA
form into its equivalent CNF form cnf . This is de-
fined by function toCNF(.): Cdsa× Υ→ Ccnf , which
transforms a given statement cdsa ∈ Cdsa into its
equivalent CNF form ccnf ∈ Ccnf under the path
condition � ∈ Υ upon which the execution of cdsa
depends.

toCNF(�, skip) = if � then skip

toCNF(�, vi ∶= ei) = if � then vi ∶= ei
toCNF(�, assume �dsa) = if � then assume �dsa

toCNF(�, Qdsa
sel ) = if � then Qdsa

sel

toCNF(�, Qdsa
ins ) = if � then Qdsa

ins

toCNF(�, Qdsa
upd ) = if � then Qdsa

upd

toCNF(�, Qdsa
del ) = if � then Qdsa

del

toCNF(�, stmtdsa1 ; stmtdsa2 ) = toCNF(�, stmtdsa1 );

toCNF(�, stmtdsa2 )

toCNF(�, if b then stmtdsa1
else stmtdsa2 endif) = toCNF(� ∧ b, stmtdsa1 );

toCNF(� ∧ ¬b, stmtdsa2 )

toCNF(�, assert �dsa) = if � then assert �dsa

(2) Extraction of two sets of formulas fstmt and fpr from
each statement in cnf . To this purpose, we define
the function Conf (.): Ccnf →W ×W, whereW is
the set of well-formed first order logic formulas and
fstmt, fpr ∈ W. This is depicted in Figure 12. Fi-
nally, a single verification condition is constructed in
the form of⋀ fstmt ⇒

⋀

fpr, where fstmt contains theencoding of program statements and fpr contains theencoding of all assert commands in the program. Note
that, unlike symbolic execution, in this technique only
one verification condition is generated.

Figure 13 depicts the function VCcnf which combines these
two steps and generates a VC from a given program in DSA
form. Algorithm 2 is the overall algorithm to generate the
CNF-based VC. Example 2 illustrates the CNF-based VCG
technique.

Algorithm 2: CNF-based VCG
Input: DSA form dsa of annotated database

program 
Output: Single VC

1 � := true;
2 Let dsa be a sequence of statements s1; s2;… ; sn;
3 (fstmt, fpr) := VCcnf (�, dsa)
4 VC := (⋀ fstmt ⇒

⋀

fpr)
5 Return VC
6 End

Example 2. Given the DSA form of DBprog in Figure 11,
its CNF form applying ToCNF(.) is depicted in Figure 14.
Figure 15(a) shows the output formula set fstmt and fpr ob-
tained by applyingConf (.). Therefore, theVC is constructed
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—————————————————————————————————————————————————————

Conf (if bi then ⟨rsi+1 ∶= SELECT(f (e⃗), r(ℎ⃗(x⃗)), �, g(e⃗)), condi⟩) = ({(bi ∧ condi ⇒ rsi+1 =F(a⃗i)) ∨ (bi ∧ ¬condi ⇒ rsi+1 = rsi)}, ∅)

Conf (⟨a⃗i+1 ∶= act1i ↷ act2i , cond
1
i ↷ cond2i ⟩) = Conf(⟨a⃗i+1 ∶= act1i , cond

1
i ⟩) ∨ Conf(⟨a⃗i+1 ∶= act2i , cond

2
i ⟩) Conf (if bi then skip) = (∅, ∅)

Conf (if bi then ⟨a⃗i+1 ∶= UPDATE(e⃗i), condi⟩) = ({(b ∧ condi ⇒
|a⃗i |
⋀

i=1
(a⃗i+1 = e⃗i))}, ∅) Conf (if bi then vi ∶= ei) = ({bi ⇒ vi = ei}, ∅)

Conf (if bi then ⟨a⃗i+1 ∶= INSERT(e⃗i), false⟩) = ({b ⇒ (
|a⃗i |
⋀

i=1
(a⃗i+1 = e⃗i)}, ∅) Conf (if bi then assume �i) = ({bi ⇒ �i}, ∅)

Conf (if bi then ⟨a⃗i+1 ∶= DELETE(), condi⟩) = ({� ∧ ¬condi ⇒
|a⃗i |
⋀

i=1
(a⃗i+1 = a⃗i))}, ∅) Conf (if bi then assert �i) = (∅, {bi ⇒ �i})

Conf (stmtdsa1 ; stmtdsa2 ) = (fstmt1 ∪ fstmt2 , fpr1 ∪ fpr2 ), wℎere Conf (stmtdsa1 ) = (fstmt1 , fpr1 ), Conf (stmt
dsa
2 ) = (fstmt2 , fpr2)

—————————————————————————————————————————————————————
Figure 12: Function to compute

⋀

fstmt and
⋀

fpr

—————————————————————————————————————————————————————

VCcnf (�, skip) = (∅, ∅) VCcnf (�, vi ∶= ei) = ({�⇒ vi = ei}, ∅) VCcnf (�, assume �i) = ({�⇒ �i}, ∅)

VCcnf (�, ⟨rsi+1 ∶= SELECT(f (e⃗), r(ℎ⃗(x⃗)), �, g(e⃗)), condi⟩) = ({(� ∧ condi ⇒ rsi+1 = F(a⃗i)) ∨ (� ∧ ¬condi ⇒ rsi+1 = rsi)}, ∅)

VCcnf (�, ⟨a⃗i+1 ∶= act1i ↷ act2i , cond
1
i ↷ cond2i ⟩) = VCcnf (�, ⟨a⃗i+1 ∶= act1i , cond

1
i ⟩) ∨ VCcnf (�, ⟨a⃗i+1 ∶= act2i , cond

2
i ⟩)

VCcnf (�, ⟨a⃗i+1 ∶= UPDATE(e⃗i), condi⟩) = ({(� ∧ condi ⇒
|a⃗i |
⋀

i=1
(a⃗i+1 = e⃗i))}, ∅) VCcnf (�, ⟨a⃗i+1 ∶= INSERT(e⃗i), false⟩) = ({�⇒ (

|a⃗i |
⋀

i=1
(a⃗i+1 = e⃗i))}, ∅)

VCcnf (�, ⟨a⃗i+1 ∶= DELETE(), condi⟩) = ({� ∧ ¬condi ⇒
|a⃗i |
⋀

i=1
(a⃗i+1 = a⃗i))}, ∅) VCcnf (�, assert �i) = (∅, {� ⇒ �i})

VCcnf (�, stmtdsa1 ; stmtdsa2 ) = (fstmt1 ∪ fstmt2 , fpr1 ∪ fpr2), wℎere (fstmt1 , fpr1) = VCcnf (�, stmtdsa1 ), (fstmt2 , fpr2) = VCcnf (�, stmtdsa2 )

VCcnf (�, if bi then stmtdsa1 else stmtdsa2 endif) = (fstmt1 ∪ fstmt2 , fpr1 ∪ fpr2), wℎere (fstmt1 , fpr1) = VCcnf (� ∧ bi, stmtdsa1 ),

(fstmt2 , fpr2) = VCcnf (� ∧ ¬bi, stmtdsa2 )

—————————————————————————————————————————————————————
Figure 13: Function to generate CNF-based VC

by combining fstmt and fpr in the form
⋀

fstmt ⇒
⋀

fpr is de-
picted in Figure 15(b).

1. CREATE OR REPLACE PROCEDURE Proc_Budget_Adjust
(y0 int, x0 int) IS

⋮
5. BEGIN
6. if true then
7. assume MP0 ⩾ 80000 and EQ0 ⩾ 60000 and CT0 ⩾ 10000

and CS0 ⩾ 5000;
9. endif
7. if true then
8. SELECT TA0 INTO z1 FROM Budget WHERE Did0= y0;
9. endif
10. if z1 ⩾ x0 then
11. m1 := z1 − x0;
12. endif

⋮
38. if true then
39. assert MP2 ⩾ 80000 and EQ2 ⩾ 60000 and CT2 ⩾ 10000 and

CS2 ⩾ 5000;
40. endif
41. end;

Figure 14: DBprogcnf : CNF form of DBprogdsa.

Observe that, similarly to when the symbolic execution
technique was used, the validity checking of VCcnf yields

invalidity for some cases which indicate a violation of the
propertyMP ⩾ 80000∧EQ ⩾ 60000∧CT ⩾ 10000∧CS ⩾
5000.

3.3. Weakest Precondition
Hoare logic is a widely-used deductive verification for-

malism for computer programs [41]. The axioms and infer-
ence rules of this proof system are based on Hoare triples of
the form {Pre}stmt{Post}. This means any terminating ex-
ecution of the statement stmt on a state satisfying the precon-
dition Pre results in a new state satisfying the postcondition
Post.

Dijkstra [42] introduced predicate transformers, a set of
rules for transforming predicates on states, as a way to spec-
ify program semantics. In particular, he defined “Weak-
est Precondition (wp)” and “Strongest Postcondition (sp)”,
treating assertions like preconditions and postconditions as
predicates on program states. The predicate transform-
ers technique generates VCs by propagating predicates ei-
ther backward (weakest preconditions) or forward (strongest
postconditions) along the program. As VCG based on the
strongest postcondition is costly due to the presence of quan-
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fstmt ∶ { (true⇒ MP0 ⩾ 80000 ∧ EQ0 ⩾ 60000 ∧ CT0 ⩾ 10000 ∧ CS0 ⩾ 5000)
(true⇒ ((z1 == TA0 ∧ Did0 == y0) ∨ (z1 == z0 ∧ ¬(Did0 == y0)))),
(z1 ⩾ x0 ⇒ m1 == z1 − x0),
(z1 ⩾ x0 ⇒ n1 == m1∕4),
((z1 ⩾ x0 ∧ Did1 == x0 ⇒ (MP1 == MP0 − n1 ∧ EQ1 == EQ0 − n1∧
CT1 == CT0 − n1 ∧ CS1 == CS0 − n1)) ∨ (z1 ⩾ x0 ∧ ¬(Did1 == x0)
⇒ (MP1 == MP0 ∧ EQ1 == EQ0 ∧ CT1 == CT0 ∧ CS1 == CS0)),
(z1 ⩾ x0 ⇒ m2 == m1),
(z1 ⩾ x0 ⇒ n2 == n1),
(z1 ⩾ x0 ⇒ MP2 == MP1 ∧ EQ2 == EQ1 ∧ CT2 == CT1 ∧ CS2 ==
CS1),
(¬(z1 ⩾ x0) ⇒ MP2 == MP0 ∧ EQ2 == EQ0 ∧ CT2 == CT0 ∧ CS2
== CS0),
(¬(z1 ⩾ x0) ⇒ m2 == m0),
(¬(z1 ⩾ x0) ⇒ n2 == n0)}

fpr ∶ { (true ⇒ MP2 ⩾ 80000 ∧ EQ2 ⩾ 60000 ∧ CT2 ⩾ 10000 ∧ CS2 ⩾ 5000)}
(a) Formula sets fstmt and fpr from DBprogcnf by applying Conf(.)

VC ∶ ((true⇒ MP0 ⩾ 80000 ∧ EQ0 ⩾ 60000 ∧ CT0 ⩾ 10000 ∧ CS0 ⩾ 5000) ∧ (
true ⇒ ((z1 == TA0 ∧ Did0 == y0) ∨ (z1 == z0 ∧ ¬(Did0 == y0)))) ∧ (z1 ⩾
x0 ⇒ m1 == z1 − x0) ∧ (z1 ⩾ x0 ⇒ n1 == m1∕4) ∧ ((z1 ⩾ x0 ∧ Did1 == x0
⇒ (MP1 == MP0 − n1 ∧ EQ1 == EQ0 − n1 ∧ CT1 == CT0 − n1 ∧ CS1 ==
CS0 − n1)) ∨ (z1 ⩾ x0 ∧ ¬(Did1 == x0)⇒ (MP1 == MP0 ∧ EQ1 == EQ0
∧ CT1 == CT0 ∧ CS1 == CS0)) ∧ (z1 ⩾ x0 ⇒ m2 == m1) ∧ (z1 ⩾ x0 ⇒ n2
== n1) ∧ (z1 ⩾ x0 ⇒ MP2 == MP1 ∧ EQ2 == EQ1 ∧ CT2 == CT1 ∧ CS2
== CS1) ∧ (¬(z1 ⩾ x0)⇒ MP2 == MP0 ∧ EQ2 == EQ0 ∧ CT2 == CT0∧
CS2 == CS0) ∧ (¬(z1 ⩾ x0)⇒ m2 == m0) ∧ (¬(z1 ⩾ x0)⇒ n2 == n0)))⇒

(true⇒ MP2 ⩾ 80000 ∧ EQ2 ⩾ 60000 ∧ CT2 ⩾ 10000 ∧ CS2 ⩾ 5000
)

(b) Verification Condition generated based on fstmt and fpr

Figure 15: Verification Condition of DBprogdsa based on CNF

tifiers in the formula, in this section, we extend VCG based
on the weakest precondition to the case of database lan-
guage. Given a program statement stmt and a postcondition
 , the weakest precondition of iteration free imperative pro-
gram is computed as follows:

wp(skip,  ) =  wp(v ∶= e,  ) =  [e∕v]
wp(stmt1; stmt2,  ) = wp(stmt1, wp(stmt2,  ))

wp(if b then stmt1 else stmt2
endif ,  ) = (b ∧ wp(stmt1,  )) ∨ (¬b ∧ wp(stmt2,  ))

In order to adopt VCG of database programs, we define wp
on database statements in Figure 16. Observe that, this pro-
cess does not require to convert input programs into DSA
form.
Given a program  annotated with assume and assert in the
form {assume  1;  ; assert  2;}, the VC is constructed as
follows: wp(assume  1,wp( ,  2)) =  1 ⇒ wp( ,  2).The complete algorithmic steps to generate thewp-based VC
is depicted in Algorithm 3 and this is illustrated with our
motivating example in Example 3.
Example 3. Consider the motivating program DBprog de-
picted in Figure 1. The annotated form of DBprog is de-
picted in Figure 17.
The verification condition using weakest precondition wp of
the above annotated program is computed as follows:

Let c ≜ m ∶= z − x;

—————————————————————————–
wp(skip,  ) =  wp(v ∶= e,  ) =  [e∕v]

wp(assume  1,  2) =  1 ⇒  2 wp(assert  1,  2) =  1 ∧  2

wp(⟨rs ∶= SELECT(f (e⃗), r(ℎ⃗(x⃗)), �,
g(e⃗)), cond⟩,  ) = ( [F(a⃗)∕rs] ∧ cond) ∨ ( ∧ ¬cond)

wp(⟨a⃗ ∶= UPDATE(e⃗), cond⟩,  ) = (( ∧ ¬cond) ∨ ( [e⃗∕a⃗] ∧ cond))
wp(⟨a⃗ ∶= INSERT(e⃗), false⟩,  ) =  [e⃗∕a⃗] ∨  
wp(⟨a⃗ ∶= DELETE(), cond⟩,  ) =  ∧ ¬cond

wp(stmt1; stmt2,  ) = wp(stmt1, wp(stmt2,  ))
wp(if b then stmt endif,  ) = (b ∧wp(stmt,  )) ∨ (¬b ∧  )

wp(if b then stmt1
else stmt2 endif ,  ) = (b ∧wp(stmt1,  ))∨

(¬b ∧wp(stmt2,  ))

—————————————————————————–
Figure 16: wp computation on our database language

Algorithm 3: Weakest Precondition Computa-
tion
Input: Database program  , specification  
Output: Single VC

1 Let  be a sequence of statements s1; s2;… ;sn;
2 Annotate  in the form of assume  1;  ; assert  2;
3 Apply wp( ,  2) which results into  3
4 Apply wp(assume  1,  3) which generates the VC

as  1 ⇒  3
5 Return VC
6 End

1. CREATE OR REPLACE PROCEDURE DBprog (y int, x int) IS
2. z int;
3. m int;
4. n int;
5. assumeMP ⩾ 80000 ∧ EQ ⩾ 60000 ∧ CT ⩾ 10000 ∧ CS ⩾ 5000;
6. BEGIN
7. SELECT TA INTO z FROM Budget WHERE Did = y;
8. if (z ⩾ x) then
9. m := z − x;
10. n := m/4;
11. UPDATE Budget SET MP = MP−n, EQ = EQ − n, CT = CT − n, CS

= CS − nWHERE Did = y;
12. endif
13. assertMP ⩾ 80000 ∧ EQ ⩾ 60000 ∧ CT ⩾ 10000 ∧ CS ⩾ 5000;
14. end;

Figure 17: Annotated form of DBprog

n ∶= m∕4;
UPDATE Budget SET MP = MP − n,EQ = EQ − n,
CT = CT − n, CS = CS − nWHERE Did = y;

and  ≜ MP ⩾ 80000 ∧ EQ ⩾ 60000 ∧ CT ⩾ 10000 ∧ CS ⩾ 5000

Then wp(c,  ) ≜ wp([
m ∶= z − x;
n ∶= m∕4;
UPDATE Budget SET MP = MP − n, EQ = EQ − n,
CT = CT − n, CS = CS − nWHERE Did = y;
],  )

≜ wp([
m ∶= z − x;
n ∶= m∕4;
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],  1)
⋮

=  3
Therefore, wp([

SELECT TA INTO z FROM BudgetWHERE Did = y;
if (z ⩾ x) then
c

endif
],  )

≜ wp([
SELECT TA INTO z FROM BudgetWHERE Did = y;
],  4)

where  4 = (z ⩾ x ∧  3) ∨ (¬(z ⩾ x) ∧  )
=  5

Finally, VC is generated as follows:

wp([
assumeMP ⩾ 80000 ∧ EQ ⩾ 60000 ∧ CT ⩾ 10000 ∧ CS ⩾ 5000
],  5)

= MP ⩾ 80000 ∧ EQ ⩾ 60000 ∧ CT ⩾ 10000 ∧ CS ⩾ 5000 ⟹  5

= (MP ⩾ 80000 ∧ EQ ⩾ 60000 ∧ CT ⩾ 10000 ∧ CS ⩾ 5000) ⟹ ((Did
= y ∧

(TA ⩾ x ∧ ((Did = y ∧MP − (TA − x)∕4 ⩾ 80000 ∧ EQ − (TA−
x)∕4 ⩾ 60000 ∧ CT − (TA − x)∕4 ⩾ 10000 ∧ CS − (TA − x)∕4 ⩾ 5000)
∨ (¬(Did = y) ∧MP ⩾ 80000 ∧ EQ ⩾ 60000 ∧ CT ⩾ 10000 ∧ CS ⩾

5000))) ∨
(

(¬(TA ⩾ x) ∧MP ⩾ 80000 ∧ EQ ⩾ 60000 ∧ CT ⩾ 10000 ∧

CS ⩾ 5000))) ∨ (¬(Did = y) ∧ (

z ⩾ x ∧ ((Did = y ∧MP − (z − x)∕4 ⩾
80000 ∧ EQ − (z − x)∕4 ⩾ 60000 ∧ CT − (z − x)∕4 ⩾ 10000 ∧ CS−
(z − x)∕4 ⩾ 5000) ∨ (¬(Did = y) ∧MP ⩾ 80000 ∧ EQ ⩾ 60000 ∧ CT ⩾
10000 ∧ CS ⩾ 5000))) ∨ ((¬(z ⩾ x) ∧MP ⩾ 80000 ∧ EQ ⩾ 60000 ∧ CT
⩾ 10000 ∧ CS ⩾ 5000))))

Note that, like SE and CNF methods, in this case also the
validity checking of VC yields unsatisfiablity for some cases,
indicating property violation.

Limitations: Although this approach generates a single
verification condition, the length of the VC may be expo-
nential w.r.t. program size. For instance, in the case of
if-else statement, the weakest precondition computation
considers both branches into a single formula, thus increas-
ing its length. Therefore, a programwith n conditional state-
ments generates a single VC of length O(2n).
Efficient Weakest Precondition

We observed that for non-DSA programs, the weakest
precondition technique produces VCs whose size is, in the
worse case, exponential with respect to the size of the pro-
gram. Flanagan and Saxe showed that when the technique
was applied to DSA form of programs, the size of the gen-
erated VCs was, in the worst case, quadratic [43]. The main
point to understanding the simplified definition of predicate
transformers for DSA programs is to observe that the set of
execution paths of such a program can be encoded logically
in a compact way that does not require duplicating assert for-
mula. We call this encoding the program formula. The pro-
gram formula of an assignment statement is simply the cor-
responding equality, and the formula of a sequence of state-

ments is the conjunction of formulas of the sub-statements.
For conditional, the formula is (b ∧  1) ∨ (¬b ∧  2), where
 1 and  2 are the formulas of the branch statements. There-
fore, the program formula of various statements of the lan-
guage under consideration are depicted in Figure 18, where
the function ℑ(stmtdsa) denotes the encoding of stmtdsa.

ℑ(skip) = ⊤ ℑ(assume �dsa) = �dsa ℑ(vi+1 ∶= ei) = vi+1 = ei
ℑ(⟨rsi+1 ∶= SELECT(f (e⃗i),

r(ℎ⃗(a⃗i)), �′, g(e⃗i)), condi⟩) = ((condi ∧ rsi+1 = F(a⃗i))
∨ (rsi+1 = rsi))

ℑ(⟨a⃗i+1 ∶= act1i ↷ act2i ,

cond1i ↷ cond2i ⟩) = ℑ(⟨a⃗i+1 ∶= act1i , cond
1
i ⟩)

∨ℑ(⟨a⃗i+1 ∶= act2i , cond
2
i ⟩)

ℑ(⟨a⃗i+1 ∶= UPDATE(e⃗i), condi⟩) = (condi ∧
|a⃗i+1 |
⋀

j=1
aji+1 = e

j
i )

ℑ(⟨a⃗i+1 ∶= INSERT(e⃗i), false⟩) = (
|a⃗i+1 |
⋀

j=1
aji+1 = e

j
i )

ℑ(⟨a⃗i+1 ∶= DELETE(), condi⟩) = ⊤

ℑ(stmtdsa1 ; stmtdsa2 ) = ℑ( stmtdsa1 ) ∧ ℑ(stmtdsa2 )

ℑ(if bi then stmtdsa1 else stmtdsa2 ) = (bi ∧ ℑ(stmtdsa1 )

∨ (¬bi ∧ℑ(stmtdsa2 ))

ℑ(assert �dsa) = �dsa

Figure 18: Definition of function ℑ(.) for language statements

Authors in [44] later proposed a simplified solution em-
phasizing that the technique could be seen as the special case
of weakest precondition computation by introducing “dream
property”.

wlp(stmtdsa,  ) ≜ ℑ(stmtdsa)⇒  

where wlp(stmtdsa,  ) is the weakest formula (known as
weakest liberal precondition of stmtdsa w.r.t  ), character-
izes the pre-states from which all non-blocking execution of
stmtdsa either goes wrong or terminates in a state satisfying
 .

SinceWPC is conservative in the sense thatwp(dsa,  )
is a predicate over pre-states of dsa such that all possible
executions of dsa terminates in a state satisfying  and
in all execution the assertion  is satisfied. However, in
wlp(dsa,  ), the execution may go wrong or terminate in
a state satisfying  . Therefore, the author in [44] derived a
notable relation between wp and wlp as follows :

wp(dsa,  ) ≜ wlp(dsa,  ) ∧ wp(dsa, true)

In case of no assert statements in dsa, we have
wp(dsa,  ) = wlp(dsa,  ), since wp(dsa, true) = true.
Therefore, by following the dream property, wlp of a pro-
gram dsa w.r.t.  can be computed as follows:

wlp(dsa,  ) ≜ ℑ(dsa) ⇒  

The wlp of programs is defined in the same way as of wp (as
shown in Figure 16) except for assume and assert statements:
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wlp(assume �1,  1) = �1 ⇒  1
wlp(assert �2,  2) = �2 ⇒  2

Therefore, for a given database program dsa; assert  ,
where dsa does not contain other assert statements, the fol-
lowing function computes a single VC.

wp(dsa, assert  , true) = wlp(dsa,  ) = ℑ(dsa)⇒  

Since ℑ(dsa) generates linear size program formula,
unlike WPC-based VC, the size of efficient weakest
precondition-based VC is linear in the size of the program.
The following example illustrates this.
Example 4. Consider annotated DBprogdsa shown in Fig-
ure 11.

Let stmtdsa1 = assumeMP0 ⩾ 80000 and EQ0 ⩾ 60000 and CT0 ⩾ 10000
and CS0 ⩾ 5000;
SELECT TA0 INTO z1 FROM Budget WHERE Did0 = y0;

stmtdsa2 = if z1 ⩾ x0 then
m1 ∶= z1 − x0;
n1 ∶= m1∕4;
UPDATE Budget SET MP1 = MP0 − n1, EQ1 = EQ0 − n1
,CT1 = CT0 − n1, CS1 = CS − n1 WHERE Did0 = x0;
n2 ∶= n0;

endif;
 = assertMP2 ⩾ 80000 and EQ2 ⩾ 60000 and CT2 ⩾ 10000

and CS2 ⩾ 5000;
wp(DBprogdsa, assert  , true) = wlp(DBprogdsa,  ) =

ℑ(DBprogdsa) ⇒  

ℑ(DBprogdsa) ⇒  = ℑ(stmtdsa1 ; stmtdsa2 ) ⇒  

ℑ(stmtdsa1 ; stmtdsa2 ) = ℑ(stmtdsa1 ) ∧ℑ(stmtdsa2 )

ℑ(stmtdsa1 ) = ((MP0 ⩾ 80000 ∧ EQ0 ⩾ 60000 ∧ CT0 ⩾ 10000 ∧ CS0 ⩾
5000) ∧ (z1 = TA0 ∧ Did0 = y0) ∨ (z1 = z0 ∧ ¬(Did0 = y0
))

ℑ(stmtdsa2 ) = ((z1 ⩾ x0 ∧ℑ(stmtdsat ) ∨ (¬z1 ⩾ x0 ∧ℑ(stmtdsaf )))

where ℑ(stmtdsat ) = (m1 = z1 − x0 ∧ n1 = m1∕4 ∧ ((Did0 = x0∧
MP1 = MP0 − n1 ∧ EQ1 = EQ0 − n1 ∧ CT1 = CT0 − n1∧
CS1 = CS − n1) ∨ (¬(Did0 = x0) ∧MP1 = MP0 ∧ EQ1 =
EQ0 ∧ CT1 = CT0 ∧ CS1 = CS0)) ∧ m2 = m1 ∧ n2 = n1∧
MP2 = MP1 ∧ EQ2 = EQ1∧
CT2 = CT1 ∧ CS2 = CS1)

ℑ(stmtdsaf ) = (MP2 = MP0 ∧ EQ2 = EQ0 ∧ CT2 = CT0 ∧ CS2 = CS0
∧ m2 = m0 ∧ n2 = n0)

wlp(DBprogdsa,  ) = ((MP0 ⩾ 80000 ∧ EQ0 ⩾ 60000 ∧ CT0 ⩾ 10000 ∧
CS0 ⩾ 5000) ∧ (z1 = TA0 ∧ Did0 = y0) ∨ (z1 = z0 ∧ ¬(
Did0 = y0)) ∧ ((z1 ⩾ x0 ∧ (m1 = z1 − x0 ∧ n1 = m1∕4∧
Did0 = x0 ∧MP1 = MP0 − n1 ∧ EQ1 = EQ0 − n1 ∧ CT1
= CT0 − n1 ∧ CS1 = CS − n1) ∨ (¬(Did0 = x0) ∧MP1 =
MP0 ∧ EQ1 = EQ0 ∧ CT1 = CT0 ∧ CS1 = CS0) ∧ m2 =
m1 ∧ n2 = n1 ∧MP2 = MP1 ∧ EQ2 = EQ1 ∧ CT2 = CT1
∧ CS2 = CS1) ∨ ((¬z1 ⩾ x0) ∧MP2 = MP0 ∧ EQ2 = EQ0
∧ CT2 = CT0 ∧ CS2 = CS0 ∧ m2 = m0 ∧ n2 = n0)) ⇒ MP2
⩾ 80000 ∧ EQ2 ⩾ 60000 ∧ CT2 ⩾ 10000 ∧ CS2 ⩾ 5000

Observe that the above VC is linear in size and does not
have duplicate assert expressions.

3.4. Addressing Aggregate Functions, NULL
Values, Sub-query, JOIN, UNION,
INTERSECT, and MINUS operations

This section provides guidance to deal with crucial
database-specific features and operations.
Aggregate functions. The aggregate functions only appear
in SELECT statements which usually return a single value as
the answer to a posed query. This means that the violation is
only possible if the values obtained through aggregate func-
tions are stored in a result-set variable which in turn may
affect, directly or indirectly, the specification representing
database property.

Given a database program containing aggregate func-
tion ℎ(x) on attribute x, our VC-based approaches ensure
the presence of ℎ(x) in the resultant VCs. If we treat ℎ(x)
in the VCs as a new variable and if the VC violates the
specification, let m be the value of ℎ(x) for which viola-
tion is observed. Since our main is to identify one instance
which leads to properties violation, we adopt the following
approach to deal with various aggregate functions:
(a) ℎ(x) ≜ min(x).

There exists a minimum values m of attribute x in a
database instance which leads to this violation. How-
ever, this may be a false positive because of the treat-
ment of x and min(x) as different variables. As a so-
lution, we propose to adopt all the constraints over x
as the constraints over min(x) in the VCs.

(b) ℎ(x) ≜ max(x).
Same as min(x).

(c) ℎ(x) ≜ sum(x).
In this case, we can adopt only the constraints which
define the lowest bound of x-values as the constraints
over the variable sum(x). Observe that this over-
approximation may lead to false positive.

(d) ℎ(x) ≜ avg(x).
In this case, we can adopt only the constraints which
define both the lower- and upper-bound of x-values as
the constraints over the variable avg(x).

(e) ℎ(x) ≜ count(∗).
This is applicable only when we consider table-level
property as a part of the specification. An example of a
table-level property is “each department must have at
least two employees”. As we consider only tuple-level
property, this case is out of the scope of this work, and
we consider it as our future plan.

Treating NULL values. In order to address NULL values,
we provide a separate treatment to the properties which spec-
ify whether attribute values may accept NULL or must be
NOT NULL. To be specific, NULL property-violation may
take place in the following situations:
(a) The value of an expression e is set to an attribute “a”

in INSERT or UPDATE, where “a” is NOT NULL and
the value of e may be NULL.
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(b) The presence of the condition in the form “x is
NULL/x is NOT NULL” in conditional statement.

In case (a), special care should be taken by checking the pos-
sibility of NULL values occurs in e against the NULL/NOT
NULL property of the attribute “a”. In such a case, a warn-
ing report is generated. In case (b), the presence of condition
in the form of “x IS NULL” or “x IS NOT NULL” always
leads to “ always false” or “always true” respectively w.r.t the
given NULL constraints “x IS NOT NULL”. Therefore, the
VC generation can decide statically whether to ignore or to
include the logical encoding of the other part of the database
statement.
Sub-query. A sub-query can be nested inside the WHERE
or HAVING clause of an outer SELECT, INSERT, UPDATE, or
DELETE statement, or inside another sub-query. A sub-query
can appear anywhere an expression can be used, if it returns
a single value. SQL statements that include a sub-query take
one of these following format:

… WHERE ⟨e⟩⟨comparison_operator[ANY | ALL]⟩⟨(sub-query)⟩.
… WHERE ⟨e [NOT] IN⟩⟨(sub-query)⟩.
… WHERE ⟨[NOT] EXIST⟩⟨(sub-query)⟩

In the case of sub-query of the format “… WHERE ⟨e⟩
⟨comparison_operator[ANY | ALL]⟩ ⟨(sub-query)⟩”, we
first convert the inner query into a logical sub-formula which
become a part of the final VC involving attributes, operators
and co-relation present in the outer query. Example 5 illus-
trates this scenario.
Example 5. Consider the UPDATE statement Qupd ≜

UPDATE ROUTES SET P = P ∗ ((100 − d)∕100)WHERE R_ID ⩾ ( SELECT
L_ID FROM LOADSWHERE CID = z);. The logical sub-formula gen-
erated from the sub-query using symbolic execution isR_ID0
⩾L_ID0 ∧CID0 = z0. Therefore, the resultant VCwould be:

((P1 = P0 ∗ ((100 − d0)∕100) ∧ R_ID0 ⩾ L_ID0 ∧ CID0 = z0)∨
(P1 = P0 ∧ ¬(R_ID0 ⩾ L_ID0 ∧ CID0 = z0)))

In the case of nested query of the format “… WHERE
⟨e [NOT] IN⟩ ⟨(sub-query)⟩”, we replace the IN operator by
assignment operator (:=) during VC generation. Since our
main aim is to determine property violation by the database
code, any instance invalidating the resultant VC fulfills our
objective.
JOIN. Without loss of generality, let us assume that all at-
tributes names in the database are unique. The presence of
a query containing �-JOIN is addressed easily by incorpo-
rating the condition � in the VC, in addition. Observe that
equi-JOIN and natural-JOIN are special cases of �-JOIN.
UNION, INTERSECT and MINUS operations. Two or
more queries can be combined using set operators UNION,
INTERSECT and MINUS. The logical encoding of UNION
(or INTERSECT) is achieved by using logical OR ∨ (or log-
ical AND ∧) operator. That is, logical formulas obtained
from operands of UNION (or INTERSECT) are composed

using ∨ (or ∧). Since MINUS operation can be replaced by
UNION and INTERSECT operations, VC generation in the
presence of MINUS can be achieved by using ∨ and ∧.
3.5. Treating Loops

As mentioned earlier, deductive verification approaches
require user’s guidance and expertise for program annota-
tion. Naturally, the presence of loops in a program makes
this process more challenging. The fundamental step in such
a case is to infer a loop invariant which remains true through-
out the loop iterations.

Following are the situations where iteration is required
for effective coding for database programs:

• If the action over the tuples of a table is parameterized
with changeable parameters for different tuples. In
this case, rather than writing separate database state-
ments in the code for different tuples of the table, the
parameterized action can collectively be expressed in
terms of a loop.

• To iterate over the result-set values using a cursor.
• Recursive Queries.

The relation between Hoare triples and weakest precondi-
tion is that {�}{ } iff � ⟹ wp( ,  ) or sp( , �)
⟹  . Hoare logic was proposed to deal with iterating
While-programs, based on the loop invariant. Formally, the
following classic inference rule [35] uses the invariant � to
express the partial correctness of any loop:

⊢ {� ∧ cond}stmt{�}
⊢ {�}while cond do stmt {� ∧ ¬cond}

Figure 19 defines the Hoare logicHdb for the database pro-grams by extending the same for imperative programs. Ob-
serve that, since wp generates quantifier free formulas, this
is the reason why wp is often used in Hoare logic verifier,
instead of sp. While the computation of loop invariants in

{ } skip { } (Skip)

{ [e∕va]} va ∶= e { } (Assignment)

{( [e⃗∕a⃗] ∧ cond)
∨( ∧ ¬cond)}⟨a⃗ ∶= UPDATE(e⃗), cond⟩{ } (UPDATE)

{ [e⃗∕a⃗] ∨  }⟨a⃗ ∶= INSERT(e⃗), false⟩{ } (INSERT)

{ ∧ ¬cond}⟨a⃗ ∶= DELETE(), cond⟩{ } (DELETE)

{( [F(a⃗)∕rs] ∧ cond)) ∨ ( ∧ ¬cond)}
⟨rs ∶= SELECT(f (e⃗), r(ℎ⃗(x⃗)), �, g(e⃗)), cond⟩{ } (SELECT)

{�}stmt1{�′} {�′}stmt2{ }
{�}stmt1; stmt2{ }

(Sequence)

{� ∧ b}stmt1{ } {� ∧ ¬b}stmt2{ }
{�}if b then stmt1 else stmt2{ }

(Conditional)

{� ∧ b}stmt{�}
{�}while b do stmt{� ∧ b}

(While loop)

Figure 19: Hdb: Hoare rules for database programs

host imperative languages relies on existing approaches [35],
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the same can be adopted for the database as well. In partic-
ular, the computation of inductive invariants in these cases,
by following the approaches in [45, 46], can be used with our
proposed verification approaches. On the other hand, as an
alternative solution, we can also extend the existing works
on an abstract interpretation of database programs [34]. The
definition of widening operation, in addition, covers recur-
sive queries as well [47].

4. Complexity Analysis and Correctness
Proofs
We are now in a position to perform complexity analysis

of the proposed VC generation algorithms and to prove their
correctness.
4.1. Complexity Analysis

Let us describe the asymptotic characteristics of VCs
generation by various approaches. VC generation based on
symbolic execution generates VCs along all execution paths
of a program. For a given program with n conditional state-
ments, there exist 2n execution paths, and therefore this re-
sults in O(2n) number of VCs. In contrary, the CNF-based
approach sequentializes branches of conditional statements
which increases the program’s length to some extent. As-
suming that the program contains a chain of nested condi-
tions up to depth m, the approach generates a single VC of
size O(n + m2). The weakest precondition-based approach
considers both branches into a single formula. Therefore, a
programwith n conditional statements generates a single VC
of size O(2n).
4.2. Correctness Proofs

We define a number of functions, namely Path, VCse,
VCcnf and wp, which act as a core of different VC genera-
tion techniques in Section 3. Therefore, the correctness of
the proposed verification techniques can be guaranteed by
proving the correctness of these functions. We achieve this
by considering the validity of input and output logical for-
mulas in terms of their semantics w.r.t. states and transition
semantics of database applications.

To this aim, let us first recall from [34] the notions of
states and state transition semantics of database programs.
State Transition Semantics of Database Language.
Since our database language involves both host imperative
variables and database attributes, the state is defined by con-
sidering the semantics domains for both of them.
Definition 1 (Application Environment). Given the set of
application variables Va and the domain of values Val, let
Ea ≜ [Va ↦ Val] be the set of all functions with domain
Va and range included in Val. An application environment
�a ∈ Ea maps application variables to the domain of values
Val.

Definition 2 (Database Environment). A database d is a
set of tables {ti | i ∈ Ix} for a given set of indexes Ix. A

Table 3
Database before and after the update operation

(a) table t
eid sal age dno
1 1500 35 10
2 800 28 20
3 2500 50 10
4 3000 62 10

(b) table t′′

eid sal age dno
1 1600 35 10
2 800 28 20
3 2600 50 10
4 3100 62 10

database environment is defined as a function �d whose do-
main is Ix, such that for i ∈ Ix, �d(i) = ti.

Definition 3 (Table Environment). Given a database table
t with attribute attr(t)={a1, a2, … , ak}. So, t ⊆ D1 ×
D2 × .... ×Dk where ai is the attribute corresponding to the
typed domain Di. A table environment �t for a table t is
defined as a function such that for any attribute ai ∈ attr(t),
�t(ai) = ⟨�i(lj) | lj ∈ t⟩ where � is the projection operator
and �i(lj) represents itℎ element of the lj-th row. In other
words, �t maps ai to the ordered set of values over the rows
of the table t.

Definition 4 (States and Concrete Semantics). Let Σdba be
the set of states for the database language under consider-
ation, defined by Σdba ≜ Edbs × Eaps where Edbs and Eaps
denote the set of all database environments and the set of
all application environments respectively. Therefore, a state
� ∈ Σdba is denoted by a tuple (�d , �a) where �d ∈ Edbs and
�a ∈ Eaps. The transition relation

Tdba ∈
[

(C × Σdba)↦ ℘(Σdba)
] (2)

specifies which successor states (�d′ , �a′ ) ∈ Σdba can follow
when a statement c ∈ C executes on state (�d , �a) ∈ Σdba.
Therefore, the transitional semanticsTdba[[]] ∈

[

(×Σdba
[[]]) ↦ ℘(Σdba[[]])

]

of a program  restricts the transi-
tion relation to program instructions only, i.e.

Tdba[[]](�d , �a) =
{

(�d′ , �a′ ) | (�d , �a), (�d′ , �a′ ) ∈ Σdba[[]]

∧ c ∈  ∧ (�d′ , �a′ ) ∈ Tdba[[c]](�d , �a)
}

Example 6 illustrates the concrete semantics of an update
statement.
Example 6. Consider the database table t in Table 3(a) and
the following update statement:

Qupd ∶ UPDATE t SET sal ∶= sal+100 WHERE age ⩾ 35

The abstract syntax is denoted by ⟨UPDATE(v⃗d , e⃗), �⟩, where
� = (age ⩾ 35) and v⃗d = ⟨sal⟩ and e⃗ = ⟨sal + 100⟩.

The table targeted by Qupd is target(Qupd)= {t}. The
semantics of Qupd is:

Tdba[[Qupd ]](�d , �a)

=Tdba[[
⟨

UPDATE(⟨sal⟩, ⟨sal + 100⟩), (age ⩾ 35)
⟩

]](�d , �a)

=Tdba[[
⟨

UPDATE(⟨sal⟩, ⟨sal + 100⟩), (age ⩾ 35)
⟩

]](�t, �a)
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[Since, target(Qupd )={t}]

=Tdba[[UPDATE(⟨sal⟩, ⟨sal + 100⟩)]](�t↓(age⩾35), �a) ⊔ (�t↓¬(age⩾35), �a)

[Absorbing � = (age ⩾ 35)]
=(�t′ , �a) ⊔ (�t↓¬(age⩾35), �a) = (�t′ ⊔ �t↓¬(age⩾35), �a ⊔ �a) = (�t′′ , �a)

wℎere �t′ ≡ �t↓(age⩾35)
[

sal ← E[[sal + 100]](�t↓(age⩾35), �a)
]

= �t↓(age⩾35)
[

sal ← ⟨1600, 2600, 3100⟩
]

The notation (t ↓ (age ⩾ 35)) denotes the set of tuples
in t for which (age ⩾ 35) is true (denoted by red part
in t of Table 3(a)). E[[.]] is a semantic function for arith-
metic expressions which maps “sal+100” to a list of values
⟨1600, 2600, 3100⟩ on the table environment �t↓(age⩾35). The
notation ← denotes a substitution by new values. Observe
that the substitution of ’sal’ by the list of values in �t↓(age⩾35)
results into a new table environment �t′ (denoted by red part
in Table 3(b)). Finally, the least upper bound (denoted ⊔)
of the two states results into a new state (�t′′ , �a) where t′′ is
depicted in Table 3(b).

Lemmas and Theorems. Let us now state a number of
lemmas and theorems aiming to guarantee the correctness
of various VC generation functions in our verification ap-
proaches. As mentioned earlier, we make use of state and
transition semantics defined above to prove these lemmas
and theorems.

Extending the semantics of assertion language defined in
[35] to the case of database applications, let the relation (�d ,
�a) ⊧I Φ means that the state (�d , �a) satisfies the assertion
Φ under the interpretation I.
Lemma 1. Let Φ be the logical encoding of an execution
path � up to program point l. Let stmtdsa be a DSA form of
program statement at program point l+1. LetΨ be the logi-
cal encoding computed using the function Path(Φ, stmtdsa).
The function Path is correct if ∀ (�d , �a) ∶ (�d , �a) ⊧I Φ
under interpretation I and Tdba[[stmtdsa]](�d , �a) = (�d′ ,
�a′ ), implies (�d′ , �a′ ) ⊧I Ψ.

Proof. The proof is established based on structural induc-
tion. Assume that (�d , �a) satisfies Φ under the interpreta-
tion I , i.e. (�d , �a) ⊧I Φ.
Assignment Statement vi+1 ∶= ei. Let Tdba[[vi+1 ∶=
ei]](�d , �a) = (�d′ , �a′ ), where (�d′ , �a′ ) is obtained by
substituting all occurrences of vi+1 in (�d , �a) by Tdba
[[ei]](�d , �a). Since ei does not involve vi+1, its semantics
are same w.r.t. both the states (�d , �a) and (�d′ , �a′ ). There-fore,

(�d′ , �a′ ) ⊧I (vi+1 == ei) (3)
On the other hand, since vi+1 is not present inΦ due to DSA
property and only vi+1 is affected in (�d′ , �a′ ), we have

(�d′ , �a′ ) ⊧I Φ (4)
Combining Equations 3 and 4, we get (�d′ , �a′ ) ⊧I (Φ ∧
vi+1 == ei).

Database Statements Q. Since a database statement Q in-
volves action ‘A’ and condition ‘cond’, this can be treated
as a guarded command equivalent to “if cond then A”. Con-
sider the DSA form ⟨a⃗i+1 ∶= act1i ↷ act2i , cond1i ↷ cond2i ⟩of different database statements. By the definition of the
function Path, we have:

Path(Φ, ⟨a⃗i+1 ∶= act1i ↷ act2i , cond
1
i ↷ cond2i ⟩) =

Path(Φ, ⟨a⃗i+1 ∶= act1i , cond
1
i ⟩)∨

Path(Φ, ⟨a⃗i+1 ∶= act2i , cond
2
i ⟩)

Let us now prove the lemma for each database action:
• Qdsaupd ≜ ⟨a⃗i+1 ∶= UPDATE(a⃗i) ↷ UPDATE(e⃗i),¬condi

↷ condi⟩. Given a state (�d , �a), assume that
Tdba[[Qdsaupd]] (�d , �a) = (�d′ , �a′ ). By the definition of
the function Path, we have

Ψ = Path(Φ, Qdsa
upd ) = Φ ∧ ((¬condi ∧

|a⃗i+1 |
⋀

j=1
aji+1 == a

j
i ) ∨

(condi ∧
|a⃗i+1 |
⋀

j=1
aji+1 == e

j
i ))

Since (�d , �a) ⊧I Φ and Φ does not involve a⃗i+1 dueto DSA property, the following holds.
(�d′ , �a′ ) ⊧I Φ (5)

Now we have two possibilities: either (�d′ , �a′ ) ⊧I
¬condi or (�d′ , �a′ ) ⊧I condi. In the former case, the
action a⃗i+1 ∶= UPDATE(a⃗i) results into the same se-
mantics for a⃗i and a⃗i+1 w.r.t. (�d′ , �a′ ), i.e. Tdba[[a⃗i]]
(�d′ , �a′ ) = Tdba[[a⃗i+1]](�d′ , �a′ ). Therefore,

(�d′ , �a′ ) ⊧I (¬condi ∧
|a⃗i+1|
⋀

j=1
aji+1 == a

j
i ) (6)

In the latter case, the attributes aji+1 ∈ a⃗i+1
in (�d′ , �a′ ), where j = 1… |a⃗i+1|, are substi-
tuted by Tdba[[e

j
i ]] (�d , �a) respectively. Since only

the value of a⃗i+1 is affected in (�d′ , �a′ ), we have
Tdba[[a⃗i+1]](�d′ , �a′ ) = Tdba[[e⃗i]](�d′ , �a′ ), and there-fore,

(�d′ , �a′ ) ⊧I (condi ∧
|a⃗i+1|
⋀

j=1
aji+1 == e

j
i ) (7)

Hence, combining Equations 5, 6 and 7, (�d′ , �a′ )
⊧I Ψ is proved.

Proofs for other statements follow similar direction. Please
see Appendix A.1 for details.
Theorem 1. Given a database program  and its annotated
DSA form {assume �dsa1 ;dsa; assert �dsa2 ; }, let X be the
set of verification conditions derived by the function VCse

which includes initial condition �dsa1 . If for all !i ∈ X, !i
is valid (denoted by ⊢ !i), then  satisfies the property �dsa2
and vice versa.
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Proof. On applying VCse(∅, {assume �dsa1 ;dsa; assert
�dsa2 ; }), according to the definition in Figure 10, we get
a set of VCs X along all execution paths, each of the form
!i ≜ (Φi ⟹ �dsa2 ) ∈ X. For all initial states (�d , �a)
satisfying �dsa1 , i.e. (�d , �a) ⊧I �dsa1 , if
Tdba[[{assume �dsa1 ;dsa}]](�d , �a) = (�d′ , �a′ ), then ac-
cording to Lemma 1 we have

for all !i ∶ (�d′ , �a′ ) ⊧I Φi (8)
If the program satisfies the assert �dsa2 , this means (�d′ , �a′ )
⊧I �dsa2 . Therefore, all !i ≜ (Φi ⟹ �dsa2 ) are valid. This
proves the theorem.
Theorem 2. Let ! be a verification condition generated
from annotated database program {assume �dsa1 ; cnf ;
assert �dsa2 ; } in its CNF form, by applying the function
VCcnf which includes initial condition �dsa1 . If ! is valid
(denoted as ⊢ !), then  satisfies the property �dsa2 and
vice versa.

Proof. Since cnf is semantically equivalent to dsa, the
proof is similar to Theorem 1.
Theorem 3. Given an annotated program {assume �1; ;
assert �2; }. If the verification condition �1 ⟹ wp( ,
�2) is valid, then  satisfies the property �2 and vice versa.

Proof. The proof is based on structural induction on stmt ∈
 . Recall the definition of wp in Figure 16 and let wp(stmt,
 2) =  1. We have to prove that, if (�d , �a) ⊧I �1 and �1 →
 1 and  2 → �2 and Tdba[[stmt]](�d , �a) = (�d′ , �a′ ), then
(�d′ , �a′ ) ⊧I  2. Let us now consider the different cases:
Assignment ≜ v ∶= e. Let (�d , �a) ⊧I �1. According
to the definition, wp(v ∶= e,  2) =  2[e∕v]. Assume that
�1 →  2[e∕v]. Therefore,

(�d , �a) ⊧I  2[e∕v] (9)
According to the transition semantics, assume Tdba

[[v ∶= e]](�d , �a) = (�d′ , �a′ ) such that

�a(z) =

{

m, if z = v
�a(z), Otℎerwise

where m = Tdba[[e]](�d , �a). Since, in (�d′ , �a′ ) all occur-rences of x are replaced by m, according to Equation 9, we
have (�d′ , �a′ ) ⊧I Ψ2. Assuming  2 → �2, this case is
proved.
Qupd ≜ ⟨a⃗ ∶= UPDATE(e⃗), cond⟩. Let (�d , �a) ⊧I
�1. According to the definition, wp(⟨a⃗ ∶= UPDATE(e⃗),
cond⟩,  2) = (( 2 ∧ ¬cond) ∨ ( 2[e⃗∕a⃗] ∧ cond)). Assume
that �1 → (( 2 ∧ ¬cond) ∨ ( 2[e⃗∕a⃗] ∧ cond)). Therefore,

(�d , �a) ⊧I (( 2 ∧ ¬cond) ∨ ( 2[e⃗∕a⃗] ∧ cond)) (10)
According to the semantics function, let us assume Tdba

[[Qupd]](�d , �a) = (�d′ , �a′ ), where

(i) Values of a⃗ will be updated by Tdba[[e⃗]](�d , �a) forthe tuples satisfying ‘cond’. That is, like assignment
statement, we have

(�d′ , �a′ ) ⊧I Ψ2 wℎen (�d , �a) ⊧I Ψ2[e⃗∕a⃗] ∧ cond(11)

(ii) Values of a⃗ will remain unchanged for those tuples
which do not satisfy ‘cond’. That is,

(�d′ , �a′ ) ⊧I Ψ2 wℎen (�d , �a) ⊧I Ψ2 ∧ ¬cond (12)

Combining Equations 10, 11 and 12, the lemma is proved
for Qupd assuming Ψ2 → �2.

Proofs for other statements follow similar direction.
Please see Appendix A.1 for details.
Recall the Hoare triple in Section 3.3 and the Hoare logic
systemHdb for database language defined in defined in Fig-ure 19. The semantics of Hoare triple is defined below:
Definition 5. The Hoare triple {�}stmt{ } is said to be
valid, denoted as ⊧ {�}stmt{ }, whenever for all ((�d , �a),
(�d′ , �a′ )) ∈ Σ, if (�d , �a) ⊧I � and Tdba[[stmt]](�d , �a) =
(�d′ , �a′ ), then (�d′ , �a′ ) ⊧I  .

Let us now prove the soundness ofHdb. We denote by ⊢Hdb{�}{ } the fact that Hoare triple {�}{ } derivable by
Hoare logic systemHdb.
Theorem 4 (Soundness of Hoare logic system.). Let stmt
∈  and let �,  be the pre-condition and post-condition
respectively. If ⊢Hdb

{�}stmt{ }, then ⊧ {�}stmt{ }.

Proof. The proofs for database statements follow the proof
in Theorem 3. For assignment, sequence, conditional, and
iteration statements, the reader may refer [35].

5. DBverify: A Database Code Verifier
In this section, we present DBverify, a prototype im-

plementation of our proposed verification approaches for
PL/SQL language, which is developed in Python with
roughly 6,500 lines of codes. The workflow of DBver-
ify is shown in Figure 20. DBverify consists of four mod-
ules: (1) DSA-translator, (2) SE-verify, (3) CNF-verify,
and (4) WP-verify. The overall schematic diagrams of
DBverify is depicted in Figure 21. Observe that the first
module converts a given PL/SQL code into its equivalent
DSA form. The modules SE-verify, CNF-verify, and
WP-verify implement verification condition generation un-
der three deductive-based approaches. Let us now describe
each of the modules in detail.
(1) Module DSA-translator: This module converts a

given PL/SQL code into its equivalent DSA form. The
initial tasks of the module are to annotate PL/SQL
code by assume and assert statements taking the given
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specification into consideration, and then to construct
the Control Flow Graph (CFG) of the annotated code
using parsing techniques. We have used the ANTLR4
parser [31] for this purpose. Finally, taking CFG in-
formation as input, the module performs variable ver-
sioning and destruction of �-nodes into its immediate
predecessor-blocks to generate DSA form by follow-
ing the standard algorithm [37] with an extension to
cover the PL/SQL language. The schematic diagram
of this module is depicted in Figure 21(a).

(2) Module SE-verify: Given an annotated PL/SQL
program in its DSA form, this module generates a set
of VCs according to Algorithm 1 depicted in section
3.1. The resultant VCs are further passed to the SMT
Solver for validity checking. We have used Z3 for this
purpose. The schematic diagram is depicted in Figure
21(b).

(3) Module CNF-verify: Unlike SE-verifier, this
module first converts the annotated input program (in
DSA form) into its equivalent CNF representation and
then generates a single VC according to Algorithm
2 depicted in Section 3.2. Finally, this VC is fed to
the Z3 SMT Solver for its validity checking. The
schematic diagram of this module is depicted in Fig-
ure 21(c).

(4) Module WP-verify: For a given database program
and its specification, this module computes a single
VC according to Algorithm 3 in Section 3.3. The
schematic diagram of this module is depicted in Fig-
ure 21(d).

As suggested in Section 3.4,DBverify considers the pres-
ence of aggregate operations as new variables. To deal with
NULL, we maintain a dictionary of the form {tableName
: [(attr-1, nullity), (attr-2, nullity), … , (attr-n, nullity)]},
where nullity represents attribute constraint such asNULL or
NOT NULL. On assigning an expression containing NULL
to any of these attributes, we check and report (if any) con-
straint violations. When a NULLvalue appears in the guard
of any conditional statements (e.g. if ... IS NULL {...}),
we replace it by ∗ representing non-determinism. Therefore,
the VC generation can decide statically whether to ignore

or to include the logical encoding of the other part of the
database statement. In the case of nested queries, DBver-
ify processes the query from the inner-most sub-query to the
outer-most sub-query based on the generated Abstract Syn-
tax Trees (AST) of sub-queries to generate logical formulas,
according to the formalism described in Section 3.4. In the
case of �-JOIN operation, DBverify first extracts the logical
formula from the AST of the condition �, and then adds it
with the logical formula of the other part of the query. In the
case of outer-JOIN, UNION, INTERSECT, and MINUS op-
erations, we follow the formalism described in Section 3.4.

6. Experimental Evaluation
This section presents experimental results on a set of

PL/SQL benchmark codes [21, 22, 23, 24, 25, 26, 27, 28]
using our prototype toolDBverify. A summary of the bench-
mark codes is depicted in Table 4.

We organize our experimental reports in two subsec-
tions. In first, we assess the performance of deductive-based
verification (symbolic execution, conditional normal form,
and weakest precondition) techniques, and in the second we
discuss about electing the most efficient algorithm. All ex-
periments are conducted using a computer system equipped
with core i7, 3.60 GHz CPU, 4GB memory, and Ubuntu
14.04 operating system.
6.1. Assessing the Deductive-based Verification

Techniques
DBverify accepts PL/SQL code annotated with asser-

tions (representing properties of interest) as input, and it gen-
erates a set of VCs expressed in Z3 Language. The validity
of VCs is then checked by providing their negation to Z3.
The result Unsat indicates that the program satisfies its prop-
erties, whereas the result Sat for at least one case indicates
a counter-example. For example, Z3 reports Sat for the VC
(in negation form) generated from the procedure “budget”
using weakest precondition and exhibits a model “[X = 1/2,
CS = 5001, MP = 160001/2, DID = 0, EQ = 60001, CT =
10001, Z = 0, TA = 5/2, Y = 0]”. This model serves as a
counter-example for the correctness of the “budget” proce-
dure.

Table 5 depicts detailed verification results of the bench-
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mark applications under three deductive approaches. The
procedures defined under each procedure provide various
services and they are verified at the individual level as they
are independent w.r.t. each other.

Since our special focus in this experiment is to verify
database properties, the third and fourth columns of the table
denote the number and type of assertions each procedure is
instrumented with. The assertions with which we have anno-
tated the PL/SQL procedures are either defined as part of the
table definitions or we have chosen based on their practical
relevance w.r.t. the procedures’ behaviours. The assertion
types are indicated by numbers, as follows: T1: Attribute-
based, T2: Tuple-based, T3: Null Value, T4: Aggregate
Functions, T5: General Assertions. The fifth column in-
dicates the number of verification conditions (VCs) gener-
ated from the procedures under Symbolic Execution-based
(SE) verification. Observe that Conditional Normal Form
(CNF) and Weakest Precondition (WPC) always generate

single VC. We have recorded total verification time (in mil-
lisec) for all procedures under three approaches in columns
6-8, and their comparison is depicted in Figure 22. This is
worthwhile to observe that verification under CNF always
takes less time as compared to SE andWPC. Interestingly, in
the case of our benchmark codes, we also experience that SE
requires more verification time as compared toWPC in most
of the cases. Arguably, the reason behind this is the genera-
tion of multiple VCs (which may contain multiple copies of
the same logical encoding) in SE and their validity check-
ing by Z3 individually (depicted in Figure 27). However,
an exception is observed in two procedures, namely P3 in
IM and RM applications, where more VC generation time
is experienced (depicted in Figure 24) due to the presence
of more number of attributes in the postconditions as well
as more number of SQL statements which define these at-
tributes. Precisely, this affects the computation time from
postcondition to weakest preconditions in the backward di-
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Table 4
Description of benchmark database applications

DB applications Description LOC #Procedures #Attributes
#Application
Variables

Courier_Company (CC) [21] Application to Manages courier related
information 935 16 40 122

Inventory_Management (IM) [22] Maintain auto-part and
assembling information 550 05 37 73

CableCity(CB) [23] Manages database of stocks, sales and
customer information 890 09 25 54

Hotel_Reservation (HR) [24] Maintains details of guest, rooms,
reservation, etc 504 05 19 24

Retail_Business Management (RM) [25] Web application to keep records
of sales of a retailer 552 04 35 24

Computer Store Management (CS) [26] Application to manage the quantity, price, product details,
etc. information of computer hardware store 738 05 38 34

Banking Management (BS) [27] Application that manages information about accounts,
debit, credit transaction details, etc. of customers. 511 04 23 34

Course Registration (CR) [28] Application to maintain the course registration
details of students in university 268 01 31 15

Figure 22: Total verification time of database procedures under deductive approaches

rection significantly. The verification outcomes indicating
the number of assertions proved as valid and invalid are re-
ported in columns 9 and 10 respectively. The results clearly
show that only 38% of the benchmark procedures satisfy the
annotated database properties, while 62% procedures vio-
late either all or part of the annotated properties. The pri-
mary cause behind this is that most of the SQL statements
in the procedures accept runtime inputs without any proper
checking. In other way, only 68% assertions are satisfied by
benchmark procedures.

Let us now draw a few other crucial observations based
on our experimental results:

(I) DSA Generation (DSAgen) Time: Conversion of PL/
SQL codes into their equivalent DSA form is a key
step in SE- and CNF-based verification. Intuitively,
various factors such as number and types of statements
in the code, number of variables and attributes defined
or used by the statements, number of conditions and
nesting depth, etc., contribute differently in DSAgen
time. To extract the insightful observation on the
variation of DSAgen time w.r.t. the PL/SQL codes,
we have classified statements into three different cat-
egories low, medium and high effective (denoted l,
m and ℎ respectively) depending upon their contri-
butions in DSA-gen time and computed the overall
weights of PL/SQL codes according to the following
equation:

W =
n
∑

i=1
(Weight(Sx

i ) + �i) (13)

where n is the number of statements and Sxi de-
notes itℎ statement in the category x ∈ {l, m, h}.
Weight(Sxi ) returns the weight of Sxi under its cate-
gory x. �i is an additional weight factor whose value
reflects the complexity level of Sxi , i.e. the number of
attributes and variables used and defined in Sxi . No-tice that this factor is implementation-dependent. We
have classified the statements as follows: Low effec-
tive category includes variables declaration, assume,
assert, cursor operations and exception handling state-
ments. Medium effective category includes assign-
ment statements. Most effective category include con-
ditional and SQL statements. Figure 23 depicts the
variation of DSAgen time w.r.t. the weights of the
codes, considering Weight(Sli ) = 1, Weight(Smi ) = 2,
and Weight(Sℎi ) = 4.

(II) VC Generation (VCgen) Time: VCgen time for all
procedures under SE, CNF and WPC are depicted in
Figure 24. As expected, VCgen in CNF always takes
less time as compared to the others. However, if we
compare VCgen in SE and WPC, we observe that for
some procedures SE performs better thanWPC, while
for the rest WPC performs better than SE. Although
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Table 5
Verification results under deductive-based approaches

DB

App
Procedures #

Assertion
Assertion
Type

#
VCs(SE)

Verification Time (in millisec)
Verification
Results

SE CNF WP #Valid #Invalid

C
C

update_client.sql (P1) 3 T1,T3 7 1132.382 429.915 605.012 2 1
add_dimension_class.sql (P2) 1 T1,T3 3 489.062 141.523 223.742 1 0

add_car.sql (P3) 2 T1-T4 36 5715.589 571.418 729.936 1 1
add_courier.sql (P4) 7 T1-T4 726 158809.247 1610.636 2652.89 6 1
add_status.sql (P5) 4 T1,T3 24 3623.771 317.157 397.077 4 0

add_parcel_type.sql (P6) 1 T1,T3,T4 3 456.85 170.738 193.391 1 0
add_client.sql (P7) 2 T1,T3,T4 18 3681.689 305.573 323.188 0 2

add_delivery_attempt.sql (P8) 4 T1,T3 27 3967.09 296.309 379.003 3 1
add_parcel.sql (P9) 3 T1,T3,T4 40 7840.22 776.464 972.306 3 0

add_warehouse.sql (P10) 2 T1,T3 24 6005.307 473.43 576.8599 2 0
update_warehouse.sql (P11) 3 T1,T3 3 553.536 213.336 270.883 2 1

driving_license_category (P12) 1 T1,T3 3 450.966 134.064 152.183 1 0
get_contract_type_id.sql (P13) 1 T1,T3 3 469.39 170.085 253.615 1 0
get_delivery_status.sql (P14) 1 T1,T3 3 444.132 163.679 197.397 1 0
get_country_id.sql (P15) 1 T1,T3 3 450.762 171.882 256.791 1 0
delete_client.sql (P16) 1 T1 7 141.092 107.117 119 1 0

IM

add-to-inventory.sql (P1) 1 T1 1 150.933 148.536 150.597 1 0
assemble-module.sql (P2) 4 T1,T2 30 5822.301 195.399 437.9089 0 4

assemble-component.sql(P3) 10 T1-T5 78 11235.171 397.668 22882.824 8 2
procinventory.sql (P4) 7 T1,T3,T5 15 2577.703 730.68 854.946 6 1

deliver.sql (P5) 3 T1,T3 3 405.958 205.872 345.739 2 1

R
M

add_cust.sql (P1) 2 T1,T3,T5 9 3740.924 620.314 2561.225 0 2
qoh_update.sql(P2) 4 T1,T3 7 1115.73 458.236 989.809 1 3

retail-business-logic.sql (P3) 3 T1,T2,T5 72 13464.077 153.664 45707.734 2 1
budget.sql (P4) 1 T1,T2,T5 2 510.087 231.96 393.028 0 1

H
R

bill.sql (P1) 1 T1,T5 2 332.12 278.318 303.683 0 1
award-bonus.sql (P2) 1 T2 2 347.44 148.783 291.376 0 1
discount.sql (P3) 1 T1,T5 4 897.481 217.413 369.509 0 1

resrvation-proc.sql (P4) 5 T1,T3 30 6427.385 348.296 488.749 4 1

C
S

cust-emp-proc.sql (P1) 2 T1,T2 6 850.02 141.256 189.866 2 0
cartsell.sql (P2) 5 T1-T3 30 4944.753 454.442 567.582 5 0
loginproc.sql (P3) 2 T1-T3 9 1951.349 188.744 206.902 0 2
product.sql (P4) 4 T1,T3 79 17081.274 770.027 3453.8509 3 1
transfer.sql (P5) 4 T1,T3 4 686.796 314.784 416.193 4 0

B
S

credit-account.sql (P1) 1 T1 1 305.4 129.629 121.744 1 0
debit-account.sql (P2) 1 T1,T5 2 302.246 127.123 134.39 0 1

Procedure_transactions.sql (P3) 7 T1,T3,T4 64 19009.815 749.565 3019.334 6 1
check.sql (P4) 1 T1 2 294.594 118.144 123.658 0 1

C
aC

AddCustomerPoints.sql (P1) 1 T1 4 952.831 222.605 232.99 0 1
CheckPassword.sql (P2) 1 T1,T2 3 469.283 132.547 154.568 1 0
UpdateQuantity.sql (P3) 1 T1,T2 6 902.813 150.781 233.769 1 0
RecordNewSale.sql (P4) 1 T1 16 2544.719 307.056 911.324 0 1
PopulateProducts.sql (P5) 1 T1,T3 4 974.6 264.795 135.582 0 1
PopulateCustomers.sql (6P) 1 T1,T3 4 678.47 377.758 162.135 0 1

PopulateSales.sql (P7) 4 T1-T5 1024 169602.727 662.117 80132.817 3 1
DecreaseDispStock.sql (P8) 1 T1 5 765.373 190.366 313.94 0 1
IncreaseDispStock.sql (P9) 1 T1 5 782.142 197.925 312.692 0 1

CR isEnrollable.sql (P1) 1 T1,T3 14 4164.848 434.723 634.9329 1 0

VC generation in both approaches gets highly affected
by the presence of conditional statements, the primary
reason behind this difference in VCgen time is as fol-
lows: In SE, the logical encoding of all statements
along each path appears in its corresponding VC. This
creates multiple copies of the logical encoding of the

same statement in multiple VCs, if the statement ap-
pears in all those paths. Therefore, procedures hav-
ing a large number of execution paths which tolerate
multiple copies of the same statements’ logical encod-
ing experience higher VCgen time (for example, pro-
cedures P4, P9 and P10 in CC, P2 in IM, P4 in RH,
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Figure 23: DSAgen Time VS Effective Weights of Pro-
cedures

and P3 in BS). In contrast, in WPC, VC generation
deals with the computation of the weakest precondi-
tion from the postcondition in a backward direction
and this primarily gets affected by only those state-
ments which define the attributes or variables that ap-
peared in the postcondition. In particular, SQL state-
ments as defining statements are more influential in
this case, as they involve WHERE clause. Therefore,
procedures having more such defining statements ex-
perience higher VCgen in WPC (for example, P3 in
IM and RM, P4 in CS, etc.).
Let us now observe the variation of VCgen w.r.t. PL/
SQL codes, identifying the influence of different types
of statements and their operational complexity to the
VCgen. The computation of weights of PL/SQL codes
in case of SE, CNF andWPC follows similar approach
as in the case of DSAgen time, with minor changes
either in equation or in statements’ classification. In
SE and CNF, conditional statements are considered
as medium category, whereas WPC considers the as-
sert and conditional statements as high category. Al-
though the weight computation in CNF and WPC fol-
lows Equation 13, it differs in case of SE by taking
into account various paths in the code as defined in
Equation 14.

W =
p
∑

r=1

(

n
∑

i=1
(Weight(Sx

i,r) + �i,r)
)

(14)

Following the Equations 13 and 14, the variation of
VCgen time w.r.t. weights of different procedures in
the case of SE, CNF, andWPC are depicted in Figures
25(a), 25(b), and 25(c) respectively.

(III) Number of VCs: The number of VCs in the SE-based
technique is same as the number of execution paths
that exist in the code, and it depends on the number of
conditions and their nesting structure. the presence of
conditional statements without any nesting in the code
yields a maximum number of paths, whereas a bal-
anced form of nesting in both if-block and else-block
yields a minimum number of paths in the code. There-
fore, given n number of conditional statements in the
code, the number of paths (hence VCs) lie within the
interval [n+1, 2n]. We observe that our results on the

number of generated VCs lie between this allowable
range depicted in Figure 26.

(IV) Z3 Execution time (Z3exe): Since we have built our
tool on the top of SMT solver Z3, the time taken by
the Z3 to validate the generated formula for all pro-
cedures under three deductive approaches is depicted
in Figure 27. This is observed that Z3 execution time
for the VCs generated in CNF always takes less time
compared to others. However, in the case of SE and
WPC, is depends on the number of VCs generated in
SE versus the size of VC generated in WPC.

6.2. Electing Most Efficient Verification Algorithm
While evaluating different deductive verification algo-

rithms with a common goal, the first question comes to mind
is "which one is the most efficient or suitable algorithm?".
Let us address this question by analyzing the results from
both theoretical and practical perspectives.

As already discussed in Section 4, for a given program
with n conditional statements, there exist O(2n) execution
paths and therefore SE-based algorithm results into O(2n)
number of VCs. In contrast, the CNF algorithm avoids
path enumeration by transforming the procedure into CNF-
form. Assuming that the program contains n conditional
statements with nesting depth up to m, the CNF algorithm
generates a single VC of size O(n + m2). WPC algorithm,
on the other hand, generates single VC by OR-ing the weak-
est preconditions generated from the postcondition along all
branches of the code. This exhibits exponential O(2n) size
of VC for programs with n conditional statements.

Let us now do an analysis based on our empirical study.
As clear in Figures 24, CNF always takes less VC generation
time as an evidence to the theoretical analysis results. How-
ever, VCgen in case of SE andWPC, although both are influ-
enced by conditional statements, varies due to the presence
of other statements. In particular, as already mentioned be-
fore, SE performs path enumeration and takes into account
the same statements multiple times during the VC genera-
tion, if the statements appear over multiple paths. This con-
sumes a significant amount of time which varies depending
upon the number of paths and their length. On the other
hand, VC generation in WPC effectively depends on the
computation of weakest precondition from postconditions.
This consumes a significant amount of time which increases
if postcondition involves more number of attributes and vari-
ables and there exist more number of statements which de-
fine those attributes or variables. Although, our empirical
study does not allow us to quantify these factors exactly, one
can conclude that programs having less number of defining
statements and more number of execution paths experience
more VCgen time in SE than that in case of WPC.

A similar observation can also be drawn from the Z3 ex-
ecution time, depicted in Figure 27, where VCs generated
in CNF always takes less time as compared to the execution
of VCs generated in SE and WPC. However, we observe in
most of the cases that Z3 execution time in SE is more than
that in WPC, due to the presence of multiple VCs (with rep-
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Figure 24: VC Generation (VCgen) Time under deductive approaches

(a) SE-VCgen Time VS Effective Weights
of Procedures

(b) CNF-VCgen Time VS Weight of Ef-
fective of of Procedures

(c) WPC-VCgen Time VS Weight of Ef-
fective of Procedures

Figure 25: VCgen Time under deductive approaches

Figure 26: Number of VCs generated in SE

etition of logical encoding) and their validity checking indi-
vidually. Exception is observed in two cases, namely P3 in
IM and RM, where the size of VC generated inWPC is much
higher than the total size of all VCs generated in SE. This
happens due to the presence of more number of attributes
in postcondition and more number of SQL statements which
define those attributes. As WPC does not require DSA con-
version, this becomes a key factor on the overall verifica-
tion time depicted in Figure 22. Based on this analysis, one
can now easily judge that CNF is the most efficient verifi-
cation algorithm among these three. However, the decision
to choose one between SE and WPC depends on the pro-
gram’s structure, size of the postcondition and the types of
statements involved in the program.

7. Threats to Validity
We first discuss the threats to external validity, which

are about the generalization of our findings. Three proposed
VC generation techniques in this paper are, in general, ap-
plicable to the case of database applications dealing with
relational databases. In particular, our focus is to verify
their correctness w.r.t. database properties. In terms of ex-
pressive power of the assertion language, although we are
able to express most common database properties [19], the
failure is observed in case of property that refers to refer-
ential integrity or involves the count of database records.
Notably, our theoretical formalism is based on the abstract
syntax of a database language embedded within an impera-
tive host language. Although this paper considers a simple
form of host imperative language, the support of dynamic
memory data structures, floating points, pointers, etc., can be
provided with more engineering without affecting the gen-
eral idea of the proposed techniques. Besides, the abstract
syntax of database counter-part captures crucial features of
the languages used in popular structured database systems,
such as MySQL, Oracle, DB2, Microsoft SQL Server, Post-
greSQL, etc., with a complete support for data manipulation
operations. It should be mentioned that the proposed ap-
proach does not support verification of dynamically gener-
ated database statements in the applications. The developed
toolDBverify currently supports loop-free PL/SQL only. We
are in the process of extending its supports to loop (as high-
lighted in Section 3.5) and to the languages of other database
management systems with their embedding within popular
host languages (such as C, Python, Java, etc.) in the next re-
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Figure 27: Z3 Execution Time of deductive approaches

lease of the tool. For the latter case, we require little effort
to modify the parser-based language processing module in
DBverify according to the language’s concrete syntax. Ob-
serve that, in the case of concurrent database transactions,
as two or more transactions can interleave in a concrete pro-
gram run, this threat can bemitigated by our current proposal
through a static identification of all possible permutations of
database statements present in the transactions [48, 49], in-
curring an exponential computation cost [50, 51].

Let us now discuss the threats to internal validity, which
refer to experimental bias and errors. In our experiment, we
have annotated benchmark PL/SQL procedures with the as-
sertions that are already part of the underlying database ta-
ble definitions or chosen based on their practical relevance
w.r.t. the procedures’ behavior. To this aim, we consider the
most common relational database properties, as reported in
[19]. Even though our proposal covers crucial SQL features,
the aggregate functions (except COUNT) are treated with an
abstraction and this may results in false positives. The ex-
perimental results, as expected, depict that CNF is the most
efficient verification algorithm among these three. However,
the decision to choose one between SE and WPC depends
on the program’s structure, size of the postcondition and the
types of statements involved in the program.

8. Related Works
Theorem proving (Deductive reasoning) [2, 3, 4], model

checking (algorithmic verification) [5, 6, 7] and process al-
gebra [8] are the main categories of techniques for formally
verifying properties of both hardware and software systems.
Theorem proving andmodel checking approaches have com-
plementary strengths andweaknesses, and their combination
promises to enhance the capabilities of each [52, 53]. Pro-
cess algebra, on the other hand, constitutes a framework for
formal verification of processes and data, with the emphasis
on processes that are executed concurrently.

Over the decades, numerous proposals based on the
above-mentionedmethods are introduced in the literature for
the verification of general purpose programming languages,
addressing various language features such as variables, con-
trol structures, pointers, objects, etc. [2, 3, 4, 10, 41].
In addition, database researchers have also shown signifi-
cant interest in verifying database applications using the-
orem proving [14, 15, 16, 17, 18] and model checking

[54, 55, 56, 57, 58, 59, 60]. Apart from this, there has also
been some proposal on testing [61, 62, 63, 64], equivalences
checking [65, 66], schema refactoring [67, 68] as well as syn-
thesis [69, 70].

The authors in [17] propose an approach for verifica-
tion of web application embedded with SQL. This requires
the translation of embedded SQL scripts into SmpSL func-
tions followed by the computation of verification conditions
of SmpSL functions using weakest precondition. The pur-
pose is to verify integrity constraints defined on the underly-
ing database. The limited expressibility of SmpSL does not
cover aggregate functions or arithmetic operations. Integrity
constraints verification in the object-oriented database pro-
gramming language O2 is proposed in [15]. For a given
method m and constraint C, m can not violate C if ⃖⃖⃗m (C) ⇒
C or C ⇒ ⃖⃖m⃖(C), where ⃖⃖⃗m(�) is a postcondition for a given
precondition � and ⃖⃖m⃖(�) is a precondition for a given post-
condition �. The proposed approach computes verification
conditions using either weakest precondition or strongest
postcondition computations. Authors in [16] propose in-
tegrity constraints verification for database applications us-
ing transformation operators. The proposed approach ex-
pressed every update operation as a predicate U = P (a⃗),
where a⃗ denotes a sequence of constants. Integrity con-
straints are defined in a constraint theory �. The function
afterU (�) translates the constraint theory to the weakest pre-
condition of � with respect to the update U and a simplified
formula is obtained by applying function SimpU (�). The re-
sultant formula is executed as a query and if it returns empty
then the database is consistence, otherwise the returned tu-
ple provides hints for extending the update in order to re-
store the consistency. Verification of database integrity con-
straints using refinement types is proposed in [14]. The pro-
posed tool maps an SQL schema S to a Stateful F7 mod-
ule JSK by using a sequence of type definitions, predicate
definitions, and function signatures. User transactions are
written using the functional language F#. Verification of in-
tegrity constraints starts by generating a set of verification
conditions from F# and SQL codes, which are then passed
to an automatic theorem prover. Unfortunately, the syntax
of SQL considered in the proposed work does not include
nested queries or aggregate functions. A fully verified in-
memory relational database management system (RDBMS)
using Coq has been proposed in [18]. The authors mainly
verify whether or not the RDBMS correctly executes queries

Md. Imran Alam et al.: Preprint submitted to Elsevier Page 25 of 30



Deductive Reasoning Approach for Database Applications

w.r.t. the denotational semantics of SQL and relations.
Verification of the functional correctness of database-

driven applications using model checking is proposed in
[58]. The author introduces the WAVE tool, which allows
the users to specify functional correctness properties using
LTL formulas and verify a given database-driven application
against these functional properties. Authors in [54] consider
the verification of monadic second-order properties of runs
in a model where the underlying database can be updated by
insertion or deletion. Decidability is obtained for recency
bounded artifacts, in which only recently introduced values
are retained in the current data. A theoretical approach for
the verification of database-driven systems is proposed in
[55], where the authors use symbolic model-checking via
model completions (equivalently, via covers). Interesting
works on real-time and distributed systems using temporal
logic to obtain verification models are proposed in [71, 72].
The correctness verification of service composition meth-
ods in a multi-cloud computing environment based on event-
based QoS factors is presented in [73].

Our work draws motivation from [13, 29, 30]. In [13,
29, 30], the authors describe in detail all three approaches,
namely symbolic execution, conditional normal form, and
weakest precondition, to generate VCs for imperative lan-
guages. Our work can be seen as an extension of the same
to the case of database applications.

9. Conclusions
This work contributes towards the verification of

database applications by proposing a set of comprehen-
sive techniques to generate Verification Conditions from
database programs. With respect to the literature, the pro-
posed approach shows its competence to support crucial
SQL features along with its embedding into other host im-
perative language and allows the verification of common
database properties. We develop DBverify, a verification
tool implemented in python based on our theoretical foun-
dation, which enables users to verify PL/SQL procedures
under three different approaches. The detailed performance
analysis based on the experimental results on a set of bench-
mark PL/SQL codes demonstrates the effectiveness of the
approaches under various circumstances. Notably, the per-
formance of the CNF algorithm is observed better than the
other two approaches in all the cases. For the given set of
PL/SQL codes with chosen properties, the experimental re-
sults show that only 38% of the benchmark procedures sat-
isfy the annotated database properties, while 62% proce-
dures violate either all or part of the annotated properties.
The primary cause for the latter case is mostly due to the ac-
ceptance of runtime inputs in SQL statements without any
proper checking.
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A. Appendix
A.1. Proofs
Lemma 2. Let Φ be the logical encoding of an execution
path � up to program point l. Let stmtdsa be a DSA form of
program statement at program point l+1. LetΨ be the logi-
cal encoding computed using the function Path(Φ, stmtdsa).
The function Path is correct if ∀ (�d , �a) ∶ (�d , �a) ⊧I Φ
under interpretation I and Tdba[[stmtdsa]](�d , �a) = (�d′ ,
�a′ ), implies (�d′ , �a′ ) ⊧I Ψ.

Proof. The proof is established based on structural induc-
tion. Assume that (�d , �a) satisfies Φ under the interpreta-
tion I , i.e. (�d , �a) ⊧I Φ.

• Assignment Statement vi+1 ∶= ei. Let Tdba[[vi+1 ∶=
ei]](�d , �a) = (�d′ , �a′ ), where (�d′ , �a′ ) is obtained bysubstituting all occurrences of vi+1 in (�d , �a) byTdba
[[ei]](�d , �a). Since ei does not involve vi+1, its se-
mantics are same w.r.t. both the states (�d , �a) and
(�d′ , �a′ ). Therefore,

(�d′ , �a′ ) ⊧I (vi+1 == ei) (15)
On the other hand, since vi+1 is not present in Φ due
to DSA property and only vi+1 is affected in (�d′ , �a′ ),we have

(�d′ , �a′ ) ⊧I Φ (16)
Combining Equations 15 and 16, we get (�d′ , �a′ ) ⊧I
(Φ ∧ vi+1 == ei).

• Database Statements Q. Since a database statement Q
involves action ‘A’ and condition ‘cond’, this can be
treated as a guarded command equivalent to “if cond
then A”. Consider the DSA form ⟨a⃗i+1 ∶= act1i ↷

act2i , cond1i ↷ cond2i ⟩ of different database state-
ments. By the definition of the function Path, we
have:

Path(Φ, ⟨a⃗i+1 ∶= act1i ↷ act2i , cond
1
i ↷ cond2i ⟩) =

Path(Φ, ⟨a⃗i+1 ∶= act1i , cond
1
i ⟩)∨

Path(Φ, ⟨a⃗i+1 ∶= act2i , cond
2
i ⟩)

Let us now prove the lemma for each database action:

– Qdsaupd ≜ ⟨a⃗i+1 ∶= UPDATE(a⃗i) ↷ UPDATE(e⃗i),
¬condi↷ condi⟩. Given a state (�d , �a), assume
thatTdba[[Qdsaupd]](�d , �a)= (�d′ , �a′ ). By the def-inition of the function Path, we have

Ψ = Path(Φ, Qdsa
upd) = Φ ∧ ((¬condi ∧

|a⃗i+1|
⋀

j=1
aji+1 == a

j
i ) ∨

(condi ∧
|a⃗i+1|
⋀

j=1
aji+1 == e

j
i ))

Since (�d , �a) ⊧I Φ andΦ does not involve a⃗i+1due to DSA property, the following holds
(�d′ , �a′ ) ⊧I Φ (17)

Now we have two possibilities: either (�d′ , �a′ )
⊧I ¬condi or (�d′ , �a′ ) ⊧I condi. In the for-
mer case, the action a⃗i+1 ∶= UPDATE(a⃗i) re-sults into the same semantics for a⃗i and a⃗i+1w.r.t. (�d′ , �a′ ), i.e. Tdba[[a⃗i]](�d′ , �a′ ) =
Tdba[[a⃗i+1]](�d′ , �a′ ). Therefore,

(�d′ , �a′ ) ⊧I (¬condi ∧
|a⃗i+1|
⋀

j=1
aji+1 == a

j
i ) (18)

In the latter case, the attributes aji+1 ∈ a⃗i+1 in
(�d′ , �a′ ), where j = 1… |a⃗i+1|, are substituted
by Tdba[[eji ]](�d , �a) respectively. Since only thevalue of a⃗i+1 is affected in (�d′ , �a′ ), we have
Tdba[[a⃗i+1]](�d′ , �a′ ) = Tdba[[e⃗i]](�d′ , �a′ ), andtherefore

(�d′ , �a′ ) ⊧I (condi ∧
|a⃗i+1|
⋀

j=1
aji+1 == e

j
i ) (19)

Hence, combining Equations 17, 18 and 19,
(�d′ , �a′ ) ⊧I Ψ is proved.

– Qdsains ≜ ⟨a⃗i+1 ∶= UPDATE(a⃗i) ↷
INSERT(e⃗i), true ↷ false⟩. Given a state
(�d , �a), assume that Tdba[[Qdsains ]](�d , �a) =
(�d′ , �a′ ). By the definition of the function
Path, we have

Ψ = Path(Φ, Qdsa
ins ) = Φ∧((

|a⃗i+1 |
⋀

j=1
aji+1 == a

j
i )∨(

|a⃗i+1 |
⋀

j=1
aji+1 == e

j
i ))

Since (�d , �a) ⊧I Φ andΦ does not involve a⃗i+1due to DSA property, we have
(�d′ , �a′ ) ⊧I Φ (20)

According to the action a⃗i+1 ∶= UPDATE(a⃗i) in
Qdsains , the semantics of a⃗i and ⃗ai+1 w.r.t. (�d , �a)are same, i.e., Tdba[[a⃗i]](�d′ , �a′ ) = Tdba[[a⃗i+1]]
(�d′ , �a′ ). Therefore,

(�d′ , �a′ ) ⊧I (
|a⃗i+1|
⋀

j=1
aji+1 == a

j
i ) (21)
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However, according to the second action
a⃗i+1 ∶= INSERT(e⃗i), a single tuple containing
values Tdba [[eji ]](�d , �a) corresponding to
attributes aji+1 where j = 1… |a⃗i+1| is
inserted into the database. Since only the
value of a⃗i+1 is affected in (�d′ , �a′ ), we have
Tdba[[a⃗i+1]](�d′ , �a′ ) = Tdba[[e⃗i]](�d′ , �a′ ), andtherefore

(�d′ , �a′ ) ⊧I (
|a⃗i+1|
⋀

j=1
aji+1 == e

j
i ) (22)

Hence, combining Equations 20, 21 and 22,
(�d′ , �a′ ) ⊧I Ψ is proved.

– Qdsadel ≜ ⟨a⃗i+1 ∶= UPDATE(a⃗i) ↷
DELETE(), ¬condi ↷ condi⟩. Given a state
(�d , �a), assume that Tdba[[Qdsains ]](�d , �a) =
(�d′ , �a′ ). By the definition of the function
Path, we have

Ψ = Path(Φ, Qdsa
del ) = Φ∧(¬condi

|a⃗i+1|
⋀

j=1
aji+1 == a

j
i )

Since (�d , �a) ⊧I Φ andΦ does not involve a⃗i+1due to DSA property, the following holds
(�d′ , �a′ ) ⊧I Φ (23)

Like previous cases, we have two possibilities:
either (�d′ , �a′ ) ⊧I ¬condi or (�d′ , �a′ ) ⊧I
condi. In the former case, similar to Equation
6, we have

(�d′ , �a′ ) ⊧I (¬condi ∧
|a⃗i+1|
⋀

j=1
aji+1 == a

j
i ) (24)

While in the latter case, tuples satisfying condiare removed from the database table. Therefore,
(�d′ , �a′ ) ⊧I Ψ is proved.

– Qdsasel ≜ ⟨rsi+1 ∶= SELECT(f (e⃗i), r(ℎ⃗(a⃗i)), �′,
g(e⃗i)), condi⟩. Let Tdba[[Qdsasel ]](�d , �a) = (�d′ ,
�a′ ). According to the Path function, we have
Ψ = Path(Φ, Qdsasel ) = Φ ∧ ((condi ∧ rsi+1 =
F(a⃗i)) ∨ (¬condi ∧ rsi+1 = rsi)). Following the
similar direction as above, we can easily prove
(�d′ , �a′ ) ⊧I Ψ by taking the following facts into
the consideration:
(a) The affected application variable rsi+1 is

not involved in Φ, so (�d′ , �a′ ) ⊧I Ψ.
(b) When (�d , �a) ⊧I ¬condi then (�d′ , �a′ ) ⊧I

(¬condi ∧ rsi+1 = rsi)
(c) When (�d , �a) ⊧I condi then (�d′ , �a′ ) ⊧I

(condi ∧ rsi+1 = F(a⃗i)).

Theorem 5. Given an annotated program {assume �1; ;
assert �2; }. If the verification condition �1 ⟹ wp( ,
�2) is valid, then  satisfies the property �2 and vice versa.

Proof. The proof is based on structural induction on stmt ∈
 . Recall the definition of wp in Figure 16 and let wp(stmt,
 2) =  1. We have to prove that, if (�d , �a) ⊧I �1 and �1 →
 1 and  2 → �2 and Tdba[[stmt]](�d , �a) = (�d′ , �a′ ), then
(�d′ , �a′ ) ⊧I  2. Let us now consider the different cases:

• Assignment ≜ v ∶= e. Let (�d , �a) ⊧I �1. Accordingto the definition, wp(v ∶= e,  2) =  2[e∕v]. Assume
that �1 →  2[e∕v]. Therefore,

(�d , �a) ⊧I  2[e∕v] (25)
According to the transition semantics, assume Tdba
[[v ∶= e]](�d , �a) = (�d′ , �a′ ) such that

�a(z) =

{

m, if z = v
�a(z), Otℎerwise

wherem=Tdba[[e]](�d , �a). Since, in (�d′ , �a′ ) all oc-currences of x are replaced by m, according to Equa-
tion 25, we have (�d′ , �a′ ) ⊧I Ψ2. Assuming  2 →
�2, this case is proved.

• Qupd ≜ ⟨a⃗ ∶= UPDATE(e⃗), cond⟩. Let (�d , �a) ⊧I �1.According to the definition, wp(⟨a⃗ ∶= UPDATE(e⃗),
cond⟩,  2) = (( 2 ∧¬cond) ∨ ( 2[e⃗∕a⃗] ∧ cond)). As-sume that �1 → (( 2 ∧ ¬cond) ∨ ( 2[e⃗∕a⃗] ∧ cond)).Therefore,

(�d , �a) ⊧I (( 2 ∧ ¬cond) ∨ ( 2[e⃗∕a⃗] ∧ cond))(26)
According to the semantics function, let us assume
Tdba[[Qupd]](�d , �a) = (�d′ , �a′ ), where
(i) Values of a⃗ will be updated by Tdba[[e⃗]](�d , �a)for the tuples satisfying ‘cond’. That is, like as-

signment statement, we have
(�d′ , �a′ ) ⊧I Ψ2 wℎen (�d , �a) ⊧I Ψ2[e⃗∕a⃗] ∧ cond(27)

(ii) Values of a⃗ will remain unchanged for those tu-
ples which do not satisfy ‘cond’. That is,

(�d′ , �a′ ) ⊧I Ψ2 wℎen (�d , �a) ⊧I Ψ2 ∧ ¬cond (28)

Combining Equations 26, 27 and 28, the lemma is
proved for Qupd assuming Ψ2 → �2.

• Qins ≜ ⟨a⃗ ∶= INSERT(e⃗), false⟩. According to def-
inition of wp, wp(⟨a⃗ ∶= INSERT(e⃗), false⟩,  2)= ( 2[e⃗∕a⃗] ∨  2). Let (�d , �a) ⊧I �1 and �1 →
( 2[e⃗∕a⃗] ∨  2). Then,

(�d , �a) ⊧I ( 2[e⃗∕a⃗] ∨  2) (29)
Now given Tdba[[Qins]](�d , �a) = (�d′ , �a′ ), we havetwo cases:
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(i) Values of existing tuples will remain unchanged.
Therefore,

(�d′ , �a′ ) ⊧I Ψ2 wℎen (�d , �a) ⊧I Ψ2 (30)
(ii) For the newly inserted tuple, we have

(�d′ , �a′ ) ⊧I Ψ2 wℎen (�d , �a) ⊧I Ψ2[e⃗∕a⃗](31)
AssumingΨ2 → �2, and combining Equations 29, 30,
and 31, the lemma is proved for Qins.

• Qdel ≜ ⟨a⃗ ∶= DELETE(), cond⟩. Let (�d ,
�a) ⊧I �1. According to the definition of wp,
wp(⟨a⃗ ∶= DELETE(), cond⟩,  2) =  2 ∧ ¬cond.Assume (�d , �a) ⊧I �1 and �1 ⊧I ( 2 ∧ ¬cond).Therefore,

(�d , �a) ⊧ ( 2 ∧ ¬cond) (32)
Let Tdba[[Qdel]](�d , �a)=(�d′ , �a′ ). Since the tupleswhich remain intact in the database after the DELETE
action, do not satisfy ‘cond’, therefore, (�d′ , �a′ ) ⊧I
Ψ2 when (�d , �a) ⊧ ( 2 ∧ ¬cond). Assuming Ψ2 →
�2, the lemma is proved for Qdel.

• Qsel ≜ ⟨rs ∶= SELECT(f (e⃗), r(ℎ⃗(x⃗)), �, g(e⃗)), cond⟩.
Since the SELECT statement does not affect any
database attributes, this case can be proved easily as
�1 and �2 only involve database attributes.
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