
CS227- Lab 10

Digital design using HDL(Verilog)

The goal of this lab is to get familiar with digital modeling in Verilog Hardware Description

Language (HDL) and to learn how to handle the simulator. The goal is also to interpret outputs

from a simulator and to understand how Verilog code is interpreted by the simulator.

For this purpose we will use modelsim simulator.

Modelsim Installation link for Windows:

https://www.intel.com/content/www/us/en/software-kit/660907/intel-quartus-prime-lite-edition-

design-software-version-20-1-1-for-windows.html

Modelsim Installation link for Linux:

https://www.intel.com/content/www/us/en/software-kit/661017/intel-quartus-prime-lite-edition-

design-software-version-20-1-for-linux.html

In your local system, create a lab directory for the course (say. D:/CS227/Verilog). Download

the Lab10 files .

Start modelsim by the following steps

Start -> programes->modelsim->

Create a project (File->New->Project)

Name the project and project location as shown in the following figure.

https://www.intel.com/content/www/us/en/software-kit/660907/intel-quartus-prime-lite-edition-design-software-version-20-1-1-for-windows.html
https://www.intel.com/content/www/us/en/software-kit/660907/intel-quartus-prime-lite-edition-design-software-version-20-1-1-for-windows.html

Figure 1: Mdelsim: create project option

Then appropriate option to be selected for adding files in the project. The options are shown as below.

Figure 2: Modelsim: add items to the project option

After adding files (say a AND design file and the corresponding testbench file), they will be shown as

below.

Figure 3: Modelsim: after adding the files

After adding the files, to show the contents, you need to double click on the file name. The corresponding

file will then be available for editing purpose. Double clicking the design file will open it in a separate

window as shown below.

Figure 4: Modelsim: Displaying the design file

In a similar way, the test bench file will be available in a separate window.

Figure 5: Modelsim: Displaying the testbench file

The codes can be compiled using the compile all option as shown below.

Figure 6: Modelsim: Compile All option

Once compilation is successfully done then you are ready for the simulation. Go to simulation menu and

select Start Simulation as shown below.

Figure 7: Modelsim: start simulation

Expand the work folder and select the testbench file for starting the simulation as shown in the following

figure.

Figure 8: Modelsim: selecting the testench file for starting the simulation

For showing the simulation in wave form, go to view and select the wave option.

Figue 9: Modelsim: wave view opening

Once the wave view option is clicked, it will pop up another window as shown below.

Figure 10: Modelsim wave window

To view the objects, go to view object as shown in the following

Figure 11: Modelsim view object

Clicking the view object option will open another window as shown below

Figure 12: Modelsim: objects and wave window view

Now select the input output objects by pressing control key and drag them in the wave window (grey

color area)

Figure 13: Modelsim: After selecting the objects and dragging them in the wave panel

We can now run the simulation. To run it for 100 ns, we select the appropriate run option in the Simulate

menu as shown below.

Figure 14: Modelsim: run simulation for 100 ns option

Clicking in the wave window and pressing „f‟ will fit the wave in the available screen area. The yellow

line highlights the time and the corresponding input and output values as shown in the following figure.

Figure 15: Modelsim: Timing behavior

Task1: Simulating an AND gate

In this exercise at first simulate an AND gate (Figure 16). Consider the code in listing. This code

declares a single module, which you can think of as a class. The module's name is and_gate,

which is descriptive, as we want to simulate an AND gate.

a

b

out

Figure 16

The design file is given below.

// name: and_gate.v

module and_gate(out, a,b); //you list all inputs and outputs, by convention outputs go first

output out; // this tells the compile which lines are inputs and outputs

input a, b;

assign out = a & b; // output function

endmodule

Now that we have a module (and_gate), we need to make an instance and simulate it for testing

purposes. We only need to simulate and test, so we need to write a test bench. The terminology

goes back to the old days of hardwired testing (usually with wire wrap), where you would have a

physical testing bench, which typically was set up to rapidly connect and test circuits. The test

bench creates virtual environment to verify the correctness design (in this case “and” gate). See

Figure 17 for a conceptual representation.

a

b
out

Test bench

(tb_and_gate.v)

Figure 17

The testbench file is given below.

//name: tb_ and_gate.v

module tb_and_gate(); // Test bench for tb_ and_gate.v

reg a,b; // a reg, to allow us to assign the input, and a wire to receive the output

wire out;

and_gate uut(out,a,b); // this instantiates a and gate, uut is a label

initial

begin

a = 1'b0; // here we apply inputs to the gate

b = 1'b0;

#10;

a = 1'b0;

b = 1'b1;

#10;

a = 1'b1;

b = 1'b1;

#10;

a = 1'b1;

b = 1'b0;

#10;

end
// set up the monitoring
initial

begin

$monitor("a=%b, b=%b, out=%b, time=%t\n", a, b, out, $time);

end

endmodule

The $monitor command continuously monitors the values of the variables or signals specified in

the parameter list and displays all parameters in the list whenever the values of any one variable

or signal changes. $monitor only needs to be invoked once. Only one monitor list can be active

at a time.

Step by step intructions:

From modelsim window:

File-> Add to Project->Existing Files: Select file „and_gate.v‟ and tb_and_gate.v

Select and_gate.v in the project tab

Compile

Now compile tb_and_gate.v

To simulate:

Simulate -> Start simulation

Click the plus sign („+‟) near work

Choose tb_and_gate and click OK

In the structural window (labeled as „sim‟) you can see the structure of the design. The source

code for the module that is chosen in the structure window is displayed in the source window.

In the object window: Right click and choose Add to Wave -> signals in Region

To simulate select; Simulation -> Run -> Run -all

In the wave window, you can see the waveform for the selected signals

In this simulation outputs are also visible at main console window.

Study the simulation output and compare them with the code. Examine the output signal

of the gate.

Fig4: Simulation output

Task2: Repeat the above steps by creating or_gate.v and tb_or_gate.v

// name: or_gate

 module or_gate(out,a,b); //you list all inputs and outputs, by convention outputs go first

output out; // this tells the compile which lines are inputs and outputs

input a, b;

assign out = a | b; // output function

endmodule

//name: tb_or_gate

module tb_or_gate(); // Test bench for and_gate.v

reg a,b; // a reg, to allow us to assign the input, and a wire to receive the output

wire out;

or_gate uut (out,a,b); // this instantiates a and gate, uut is a label

initial

begin

a = 1'b0; // here we apply inputs to the gate

b = 1'b0;

#10;

a = 1'b0;

b = 1'b1;

#10;

a = 1'b1;

b = 1'b1;

#10;

a = 1'b1;

b = 1'b0;

#10;

end
// set up the monitoring
initial

begin

$monitor("a=%b, b=%b, out=%b, time=%t\n", a, b, out, $time);

end

endmodule.

Exercise: Simulate 3input / input AND gate and OR gate. Write appropriate testbench.

Task 3: Types Modeling in Verilog

In this part we will model a logic function in different ways. Consider the following table

sel In2 In1 out

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

Out put can be simplied as

Out=in1. sel +in2. sel′ and the implementation is shown in figure 4

Inv_sel

sel

in1

in2

out

a1_o

a2_o

a1

a2

o1

n1

Figure 4

There are various ways of modeling in Verilog.

(1) Structural

(2) Behavioural level

Let us call this function as mux and now we model the function in the above 3 methods.

(1) Structural

Structural Style: The circuit is specified in terms of lower level components (in this example

logic gates, which are Verilog primitives) connected with internal signals. The translation of

such a specification into a physical circuit is straight forward.

// lines start with “//” is a comment

// name: mux_gate.v // gate level model

module mux_struct(out, in1,in2,sel); //you list all inputs and outputs, by convention outputs go first

output out; // this tells the compile which lines are inputs and outputs

input in1,in2,sel;

and a1 (a1_o,in1,sel); // defines the a1 gate, see figure

not n1 (inv_sel,sel); // defines the inverter gate, see figure

and a2 (a2_o,in2,inv_sel); // defines the a2 gate, see figure

or o1 (out, a1_o, a2_o); // defines the 01 gate, see figure

endmodule

(2) Behavioural level

1. Behavioural Style: It specifies the circuit in terms of its expected behaviour. It is the

closest to a natural language description of the circuit functionality.

// lines start with “//” is a comment

// name: mux_behav.v // Behavior: event-driven behavior description construct

module mux_behav(out, in1,in2,sel); //you list all inputs and outputs, by convention outputs go first

output out; // this tells the compile which lines are inputs and outputs

input in1,in2,sel;

reg out;

always@(in1 or in2 or sel)

begin

 if (sel)

out =in1;

 else

 out=in2;

end

endmodule

2. Behavioural Style:

// lines start with “//” is a comment

module mux_ behav2(out, in1,in2,sel); //you list all inputs and outputs, by convention outputs go first

output out; // this tells the compile which lines are inputs and outputs

input in1,in2,sel;

assign out=sel ? in1: in2;

endmodule

module tb_mux_behav();

reg in1,in2,sel;

wire out;

mux_behav UUT (out,in1,in2,sel);

initial

begin

in1 = 1'b0; // here we apply inputs to the logic

in2 = 1'b0;

sel = 1'b0;

#10;

in1 = 1'b0;

in2 = 1'b1;

sel = 1'b0;

#10;

in1 = 1'b1;

in2 = 1'b0;

sel = 1'b0;

#10; end

// set up the monitoring

initial begin

$monitor("sel=%b, in1=%b, in2=%b, out=%b, time=%t\n", sel, in1,in2, out, $time); end

 endmodule

