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In this paper a fuzzy point symmetry based genetic clustering technique (Fuzzy-VGAPS) is
proposed which can automatically determine the number of clusters present in a data set
as well as a good fuzzy partitioning of the data. The clusters can be of any size, shape or
convexity as long as they possess the property of symmetry. Here the membership values
of points to different clusters are computed using the newly proposed point symmetry
based distance. A variable number of cluster centers are encoded in the chromosomes. A
new fuzzy symmetry based cluster validity index, FSym-index is first proposed here and
thereafter it is utilized to measure the fitness of the chromosomes. The proposed index
can detect non-convex, as well as convex-non-hyperspherical partitioning with variable
number of clusters. It is mathematically justified via its relationship to a well-defined hard
cluster validity function: the Dunn’s index, for which the condition of uniqueness has
already been established. The results of the Fuzzy-VGAPS are compared with those
obtained by seven other algorithms including both fuzzy and crisp methods on four artifi-
cial and four real-life data sets. Some real-life applications of Fuzzy-VGAPS to automati-
cally cluster the gene expression data as well as segmenting the magnetic resonance
brain image with multiple sclerosis lesions are also demonstrated.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Clustering [23] is a core problem in data-mining with innumerable applications spanning many fields
[9,15,34,40,50,12,28,35,48]. For identifying clusters from a data set, some measure of similarity or proximity has to be
defined. Then this similarity measure is used to assign points to different clusters. It can be noted that symmetry is a very
well-known property of any object. Hence it can be expected that clusters also have some form of symmetry. Based on this
observation, a new point symmetry (PS) based distance, dps (PS-distance), is developed in [6]. For reducing the complexity of
computing the PS-distance, use of Kd-tree is incorporated in [6]. This proposed distance was then used to develop a genetic
algorithm based clustering technique, GAPS [6].

Fuzzy C-means (FCM) [11] is a well-known clustering technique that uses the principles of fuzzy sets to evolve a partition
matrix UðXÞ. However, FCM has three major limitations: it requires the a priori specification of the number of clusters ðKÞ, it
often gets stuck at suboptimal solutions based on the initial configuration (recently, proof of its convergence to a local min-
ima or saddle point of the error function has been provided in [27]) and it can detect only hyperspherical shaped clusters. In
most of the real-life situations the number of clusters in a data set is not known a priori. The real challenge in this situation is
to be able to automatically evolve a proper value of K as well as providing the appropriate clustering of a data set.
. All rights reserved.
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A genetic algorithm (GA) based fuzzy clustering technique, Fuzzy-VGA, has been proposed in Ref. [39], where the search
capability of genetic algorithm is utilized to overcome the above-mentioned limitations of FCM. Fuzzy-VGA, optimizing the
well-known XB-index [49], is able to automatically evolve the appropriate fuzzy clustering for hyperspherical data sets.
However for clusters with other than hyperspherical shapes, this algorithm is likely to fail, as it uses, like the FCM, the Euclid-
ean distances of the points from the respective cluster centers for computing the membership values. In order to overcome
this limitation, in this article a fuzzy variable string length genetic point symmetry (Fuzzy-VGAPS) based clustering tech-
nique is proposed. Here membership values of points to different clusters are computed based on the point symmetry based
distance rather than the Euclidean distance. This enables the proposed algorithm to automatically evolve the appropriate
clustering of all types of clusters, both convex and non-convex, which have some symmetrical structures. The chromosome
encodes the centers of a number of clusters, whose value may vary.

A new fuzzy cluster validity index, named FSym-index, is proposed in this article and thereafter it is utilized for comput-
ing the fitness of the chromosomes in Fuzzy-VGAPS. The proposed FSym-index is based on the newly developed point sym-
metry distance. As a result, the index is capable of correctly detecting the presence of clusters of different sizes and shapes as
long as they possess the symmetry property. A mathematical justification of the proposed index is also established in this
article. The superiority of the proposed genetic clustering technique for evolving the appropriate fuzzy partitioning of a data
set in comparison to two recently developed automatic clustering techniques and five recent clustering techniques for fixed
K are shown for four artificial and four real-life data sets. Analysis of variance (ANOVA) [4] technique has also been used for
the purpose of comparison. Results on the eight data sets establish the fact that Fuzzy-VGAPS is capable of detecting the
proper number of partitions and the proper partitioning from data sets having similar density clusters of symmetrical shapes
irrespective of any geometric structure, size or overlaps. Some real-life applications of Fuzzy-VGAPS to automatically cluster
the gene expression data as well as segmenting the magnetic resonance brain image with multiple sclerosis lesions are also
demonstrated.
2. The proposed fuzzy cluster validity index

The existing point symmetry based distance is first discussed in this section. Then, the motivation of developing a new
cluster validity index based on the point symmetry based distance is stated. Thereafter the cluster validity index is defined
and a mathematical justification of the proposed index is provided.

2.1. The point symmetry distance

A new definition of point symmetry based distance (PS-distance), dpsð�x; �cÞ, associated with point �x with respect to a center
�c is developed in Ref. [6]. It is also shown in Ref. [6] that dpsð�x;�cÞ is able to overcome some serious limitations of an earlier PS-
distance [47]. Let a point be �x. The symmetrical (reflected) point of �x with respect to a particular center �c is 2� �c � �x. Let us
denote this by �x�. Let knear unique nearest neighbors of �x� be at Euclidean distances of di, i ¼ 1;2; . . . ; knear. Then
dpsð�x; �cÞ ¼ dsymð�x; �cÞ � deð�x; �cÞ; ð1Þ

¼
Pknear

i¼1 di

knear
� deð�x; �cÞ; ð2Þ
where deð�x; �cÞ is the Euclidean distance between the point �x and the cluster center �c, and dsymð�x; �cÞ is a symmetry measure of �x
with respect to �c. Here knear is chosen equal to 2.

2.2. Motivation

The two fundamental questions that need to be addressed in any typical clustering scenario are: (i) how many clusters are
actually present in the data, and (ii) how real or good the clustering is, i.e., the validity of the clusters formed [20]. Several
cluster validity indices have been proposed in the literature, e.g., Davies–Bouldin (DB) index [18], Dunn’s index [21], Xie–
Beni (XB) index [49], I-index [38], PBMF-index [42], CS-index [17], XB* index [32], index proposed in [33,31], etc., to name
just a few. A good review of the cluster validity indices and their categorization can be found in [32]. Most of the validity
measures usually assume a certain geometrical structure in the cluster shapes. If clusters of different geometric shapes
are present in the same data set, the above methods will not be able to find all of them perfectly. This article presents an
attempt in this direction. Here we define a fuzzy cluster validity index named FSym-index (symmetry based cluster validity
index) that uses a new definition of the point symmetry (PS) distance (dps [6]). This index is able to detect clusters of any
shape or size as long as they possess the symmetry property.

2.3. Definition

In this article, we have proposed a fuzzy symmetry based cluster validity index, FSym-index, which measures the good-
ness of a partitioning in terms of ‘‘symmetry” and the separation present in the clusters. Let K cluster centers be denoted by �ci

where 1 6 i 6 K and UðXÞ ¼ ½uij�K�n be a partition matrix for the data. Then FSym-index is defined as follows:
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FSymðKÞ ¼ 1
K
� 1
EK
� DK

� �
; ð3Þ
where K is the number of clusters. Here,
EK ¼
XK

i¼1

Ei; ð4Þ
such that
Ei ¼
Xn

j¼1

ðum
ij � dpsð�xj; �ciÞÞ ð5Þ
and
DK ¼ max
K

i;j¼1
k�ci � �cjk: ð6Þ
DK is the maximum Euclidean distance between two cluster centers among all centers. dpsð�xj;�ciÞ is the point symmetry dis-
tance [6] between the point �xj and the cluster center �ci. This index is inspired by the PBMF-index developed in [42]. The
objective is to maximize this index in order to obtain the actual number of clusters.

2.4. Framework of the formulation

In order to obtain the actual number of clusters and to achieve the proper clustering from a data set, FSym-index value has
to be maximized. As formulated in Eq. (3), FSym is a composition of three factors, 1=K , 1=EK and DK . The first factor increases
as K decreases; as FSym needs to be maximized for optimal clustering, so it will prefer to decrease the value of K. Second
factor is the within cluster total symmetrical measure. For clusters which have good symmetrical structure, Ei value is small.
This, in turn, indicates that formation of more clusters, which are symmetrical in shape, would be encouraged. Finally the
third factor, DK , measuring the maximum separation between a pair of clusters, increases with the value of K. As these three
factors are complementary in nature, so they are expected to compete and balance each other critically for determining the
proper partitioning.

2.5. Mathematical justification of FSym-index

In this section, we mathematically justify the new validity index by establishing its relationship to the well-known valid-
ity measure proposed by Dunn [21] for hard partitions. This is inspired by a proof of optimality of the Xie–Beni index [49].

Uniqueness and global optimality of the K-partition
The Dunn-index [21] is a hard K-partition cluster validity criterion. It has been proved in Ref. [21] that if Dunn > 1, unique,

compact and separated hard clusters are found. This result has been used for fuzzy cluster validity in Ref. [49] where a hard
K-partition, WðXÞ ¼ ½wij�K�n is derived from a given fuzzy partition UðXÞ ¼ ½uij�K�n as follows: for j ¼ 1; . . . ;n, wij ¼ 1 if
i ¼ argmaxifuijg; wij ¼ 0 otherwise. Note that if a particular data set X really has well-separated clusters, then the member-
ship values obtained by any fuzzy clustering technique for this data set should be either significantly close to 1 or to 0. In this
section it has been proved that if the Dunn’s index corresponding to the optimal solution becomes sufficiently large, the opti-
mal validity function FSym, too grows large, indicating that the method has found a unique hard K-partition.

Theorem 1. Let FSym be the overall FSym-index value of any fuzzy partition for any K ¼ 2; . . . ;n� 1, and Dunn be the separation
index of the corresponding partition. Then we have
FSym P
Dunn

n� K � 0:5� knear � dmax
NN

;

where n is the total number of data points, K is the total number of clusters and knear is the number of nearest neighbors considered
while computing dps as defined in Eq. (2). dmax

NN is the maximum nearest neighbor distance in the data set. That is dmax
NN ¼

maxi¼1;...;NdNNð�xiÞ, where dNNð�xiÞ is the nearest neighbor distance of �xi.

Proof. Suppose for a particular data set X ¼ f�xj; j ¼ 1;2; . . . ;ng the fuzzy K-partition is an optimal partition with
�ci ði ¼ 1;2; . . . ;KÞ being the centers of each cluster Ci. Suppose uij is the fuzzy membership of the data point �xj belonging
to cluster Ci. Then total symmetrical variation EK of the optimal fuzzy K-partition is defined in Eq. (4). Thus,
EK ¼
XK

i¼1

Xn

j¼1

uij � dpsð�xj; �ciÞ ð7Þ

¼
XK

i¼1

Xn

j¼1

uij �
Pknear

t¼1 dt

knear
� deð�xj; �ciÞ: ð8Þ
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The total symmetrical variation of the corresponding hard K-partition is
EKhard
¼
XK

i¼1

X
�xj2Ci

dpsð�xj; �ciÞ ð9Þ

¼
XK

i¼1

X
�xj2Ci

Pknear
t¼1 dt

knear
deð�xj; �ciÞ: ð10Þ
From the definitions of EK and EKhard
above (as in finding crisp partitioning we are assigning the data points to the clusters

with respect to which it has the highest membership value), we can get [49]:
EK 6 EKhard
: ð11Þ
Let us assume that the reflected point of �xj with respect to the cluster center �ci lies near any point in the data space. Ideally, a
point �xj is exactly symmetrical with respect to some �ci if the corresponding d1 ¼ 0. However considering the uncertainty of

the location of a point as a sphere of radius dmax
NN =2 around it, we can bound d1 as d1 6

dmax
NN
2 and d2 6

3�dmax
NN

2 (if d1 is at a max-

imum dmax
NN
2 distance away, then d2 is at a maximum ðd

max
NN
2 þ dmax

NN Þ distance away). Similarly d3 ¼ dmax
NN
2 þ 2� dmax

NN ¼
5dmax

NN
2 ¼ ð2�3�1Þdmax

NN
2 ; . . . ; dt 6

ð2t�1Þdmax
NN

2 , where dt is the tth nearest neighbor distance of �x�j . Considering the term
Pknear

t¼1
dt

knear , we can
write
 Pknear

t¼1 dt

knear
6

dmax
NN

2� knear

Xknear

t¼1

ð2� t � 1Þ
 !

: ð12Þ
The right hand side of the inequality may be written as
dmax
NN

2� knear
� ðknear � ð2� 1þ ðknear � 1Þ2ÞÞ

2
¼ knear � dmax

NN

2
: ð13Þ
So, combining Eqs. (8) and (11)–(13), we can write,
EK 6
XK

i¼1

X
�xj2Ci

0:5� knear � dmax
NN � deð�xj; �ciÞ

6 0:5� knear � dmax
NN

XK

i¼1

X
�xj2Ci

deð�xj; �ciÞ: ð14Þ
Let the center �ci be inside the boundary of cluster i, for i ¼ 1 to K. Therefore
deð�xj; �ciÞ 6 diaðCiÞ; ð15Þ
for �xj 2 Ci where diaðCiÞ ¼ max�xk ;�xj2ui
deð�xk; �xjÞ. Combining Eqs. (14) and (15), we thus have
EK 6 0:5� knear � dmax
NN

XK

i¼1

X
�xj2Ci

diaðCiÞ

6 0:5� knear � dmax
NN

XK

i¼1

nidiaðCiÞ

6 0:5� knear � dmax
NN � n�max

i
diaðCiÞ:
Here ni denotes the total number of data points in cluster i. So,
1
EK

P
1

0:5� knear � dmax
NN � n�maxidiaðCiÞ

:

Let us assume that the centroid �ci be inside the boundary of cluster i, for i ¼ 1 to K. Then, in general, mini;j;i – jdisðCi;CjÞ 6 DK

where disðCi;CjÞ ¼min�xi2Ci ;�xj2Cj
deð�xi; �xjÞ and DK ¼maxK

i;j¼1deð�ci; �cjÞ. It is because disðCi;CjÞ denotes minimum distance between
any two points belonging to two different clusters where as DK denotes the maximum separation between any two cluster
centers:
FSymðKÞ ¼ DK

K � EK
P

mini;jdisðCi;CjÞ
K � 0:5� knear � dmax

NN � n�maxidiaðCiÞ
;
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i.e.,
FSymðKÞP
min16i6K�1 miniþ16j6K

disðCi ;CjÞ
max16k6K diaðCkÞ

n o
K � 0:5� knear � dmax

NN � n
: ð16Þ
The separation index Dunn [21] is defined as
Dunn ¼ min
16i6K�1

min
iþ16j6K

disðCi; CjÞ
max16k6K diaðCkÞ

� �� �
: ð17Þ
So, combining Eqs. (16) and (17), we get
FSymðKÞP Dunn
K � 0:5� knear � dmax

NN � n
:

Since the denominator is constant for a given K, FSym increases as Dunn increases. As mentioned earlier, it has been proved
by Dunn [21] that if Dunn > 1 the hard K-partition is unique. Thus, if the data set has a distinct substructure and the fuzzy
partitioning algorithm has found it, then the corresponding FSym-index value is bounded as above. h

Note that the assumption behind the proof is that clusters present in the data set have point symmetry property. Thus the
proof is not applicable in the case when the clusters do not have any point symmetry property.

3. Fuzzy-VGAPS clustering: fuzzy variable string length genetic point symmetry based clustering technique

In this section, a variable string length genetic fuzzy clustering technique using the point symmetry based distance is pro-
posed. Here the best partition is considered to be the one that corresponds to the maximum value of the proposed FSym-in-
dex. In Fuzzy-VGAPS, both the number of clusters as well as the appropriate fuzzy clustering of the data are evolved
simultaneously using the search capability of genetic algorithms.

3.1. Motivation

In recent years a large number of clustering techniques have been developed, e.g., Fuzzy-VGA [39], HNGA [44], an evo-
lutionary clustering algorithm [14], tabu search based clustering technique [36], many fuzzy clustering techniques
[12,50,48], different variants of K-means clustering techniques [40,9,26], other clustering techniques like [16,37], etc., to
name just a few. Among these clustering algorithms only a few [39,44,14] can determine both the number of clusters as well
as the appropriate partitioning automatically from different data sets. In the above-mentioned genetic clustering techniques
for automatic evolution of clusters, assignment of points to different clusters is done on the lines of K-means clustering algo-
rithm. Consequently, all these approaches are only able to find compact hyperspherical, equisized and convex clusters like
those detected by the K-means algorithm [29]. If clusters of different geometric shapes are present in the same data set, the
above methods will not be able to find all of them perfectly. This article presents an attempt in this direction. In this paper, a
variable string length GA (VGA) based fuzzy clustering technique is proposed. Here membership values of points to different
clusters are calculated based on the newly developed point symmetry based distance [6]. The newly proposed FSym-index is
used as the optimizing criterion. The characteristic features of the proposed clustering technique, referred to as Fuzzy-VGAPS
clustering, which distinguishes it from the state-of-the-art approaches are as follows. Use of variable string length GA allows
the encoding of a variable number of clusters. The FSym-index, used as the fitness function, provides the most appropriate
partitioning even when the number of clusters, K, is varied. Moreover, clusters of any shape (e.g., hyperspherical, linear, ellip-
soidal, ring shaped, etc.) and size (mixture of small and large clusters, i.e., clusters of unequal sizes) as long as they satisfy the
property of point symmetry can be detected. Again use of GA enables the algorithm to come out of local optima, a typical
problem associated with local search methods like the K-means and FCM. The basic steps of the proposed clustering tech-
nique are provided in Fig. 1. The technique is described below in detail.

3.2. Chromosome representation and population initialization

In Fuzzy-VGAPS clustering, center based encoding is used. Real numbers are encoded in the chromosomes which repre-
sent the coordinates of the centers of the partitions. The length of a particular chromosome p is lp, given by lp ¼ D�Mp,
where D is the dimension of the data and Mp is the number of cluster centers encoded in that chromosome. For example,
in three-dimensional space, the chromosome h2:3 1:4 7:6 2:1 3:4 0:01 0:06 2:3 6:7 3:2 11:72 9:5i encodes 4 cluster
centers, (2.3,1.4,7.6), (2.1,3.4,0.01), (0.06,2.3,6.7) and (3.2,11.72,9.5). Centers are considered to be indivisible. For a partic-
ular chromosome p, the number of cluster centers encoded in it, Mp, is calculated as Mp ¼ ðrandðÞmodM�Þ þ 2. Here, randðÞ is
a function returning an integer, and M� is a soft estimate of the upper bound of the number of clusters. The initial number of
clusters will therefore range from two to M� þ 1. The Mp centers encoded in a chromosome are randomly selected distinct
points from the data set. The selected points are distributed randomly in the chromosome. Thereafter a few iterations of the
K-means algorithm (with the number of clusters ðKÞ ¼ Mp) is executed with the set of centers encoded in each chromosome.
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The resultant centers are used to replace the centers in the corresponding chromosomes. The use of a few iterations of K-
means makes the centers more separated initially, than purely randomly selected ones.

3.3. Fitness computation

The fitness computation is performed for each chromosome. This is composed of two steps. Firstly, membership values of
n points to different clusters are computed. Next, the FSym-index is computed and used as a measure of the fitness of the
chromosome.

3.3.1. Computing the membership values
In Fuzzy-VGAPS clustering algorithm, a particular point is assigned to a particular cluster with membership value 1 if that

is truly symmetrical with respect to that cluster center. For points whose symmetrical measures to all the cluster centers are
greater than some threshold (i.e., points which are not symmetrical with respect to any cluster centers), membership values
are calculated using the Euclidean distance. For each point �xj; j ¼ 1;2; . . . ;n, the membership values to K different clusters
are calculated in the following way. Find the cluster center nearest to �xj in the symmetrical sense. That is, we find the cluster
center k that is nearest to the input pattern �xj using the minimum-symmetric-distance criterion: k ¼ argmini¼1;...;K dpsð�xj; �ciÞ
where the point symmetry based distance dpsð�xj;�ciÞ is computed by Eq. (2). Here, �ci denotes the center of the ith cluster.
If the corresponding dsymð�xj; �ckÞ (as defined in Eq. (1)) is smaller than a pre-specified parameter h, then the membership
uij is updated using the following criterion:
uij ¼
1; if i ¼ k;

0; if i – k:

�

Otherwise, the membership uij is updated by using the following rule which corresponds to the normal Fuzzy C-means [11]
algorithm:
uij ¼
1PK

k¼1
dij

dkj

� � 2
m�1

; ð18Þ
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where, m 2 ½1;1Þ is a weighting exponent called the fuzzifier. Here we set m ¼ 2. dij represents the Euclidean distance be-
tween a pattern �xj and the cluster center �ci. Note that in Eq. (18), the Euclidean distance has been used instead of the sym-
metry based one. It is because Eq. (18) is derived in [11] under the assumption that the distance measure used, should be a
norm. As mentioned earlier, the newly proposed dps measure is not a norm. Thus, the point symmetry based distance cannot
be used in Eq. (18).

The value of h is determined as in Ref. [6]. It is set equal to dmax
NN , maximum nearest neighbor distance in the data set.

3.3.2. Updating the centers
The centers encoded in a chromosome are updated using the following equation as in FCM
�ci ¼
Pn

j¼1ðuijÞm�xjPn
j¼1ðuijÞm

; 1 6 i 6 K: ð19Þ
Centers are updated as above in order to incorporate a limited amount of local search (provided by FCM like center update)
for speeding up the convergence of Fuzzy-VGAPS.

3.3.3. Fitness calculation
The fitness of a chromosome indicates the degree of goodness of the solution it represents. The fitness of a chromosome is

computed using the newly developed FSym-index. The fitness function for chromosome j is defined as FSymj, i.e., the FSym
index computed for the chromosome. The objective of the GA is to maximize this fitness function.

3.4. Selection

Conventional proportional selection is applied on the population of strings. Here, a string receives a number of copies that
is proportional to its fitness in the population. We have used roulette wheel strategy for implementing the proportional
selection scheme.

3.5. Crossover

We have used the crossover operation similar to that used in Fuzzy-VGA based clustering [39]. The cluster centers are
considered to be indivisible, i.e., the crossover points can only lie in between two cluster centers. The crossover operation
designed in [39] ensures that the information exchange takes place in such a way that both the offsprings encode the centers
of at least two clusters. The operator is defined as follows [39]: let parent chromosomes P1 and P2 encode M1 and M2 cluster
centers, respectively. s1, the crossover point in P1, is generated as s1 = rand() modM1. Let s2 be the crossover point in P2, and
it may vary in between ½LBðs2Þ;UBðs2Þ�, where LBðs2Þ and UBðs2Þ indicate the lower and upper bounds of the range of s2,
respectively. LBðs2Þ and UBðs2Þ are given by
LBðs2Þ ¼minf2;maxf0;2� ðM1 � s1Þgg ð20Þ
and
UBðs2Þ ¼ fM2 �maxf0;2� s1gg: ð21Þ
Therefore, s2 is given by
s2 ¼
LBðs2Þ þ randðÞmodðUBðs2Þ � LBðs2ÞÞ; if ðUBðs2ÞP LBðs2ÞÞ;
0; otherwise:

�

Here, randðÞ is a function returning an integer. ðx mod yÞ returns the remainder of the integer division ðx=yÞ, i.e., it returns an
integer ranging between 0 to ðy� 1Þ. It can be verified by some simple calculations that if the crossover points s1 and s2 are
chosen according to the above rules, then none of the offsprings generated would have less than two clusters.

Crossover probability is selected adaptively as in Ref. [46]. The expressions for crossover probabilities are computed as
follows. Let fmax be the maximum fitness value of the current population, �f be the average fitness value of the population
and f 0 be the larger of the fitness values of the solutions to be crossed. Then the probability of crossover, lc , is calculated as:
lc ¼
k1 � ðfmax�f 0 Þ

ðfmax��f Þ ; if f 0 > �f ;

k3; if f 0 6 �f :

(

Here, as in Ref. [46], the values of k1 and k3 are kept equal to 1.0. Note that, when fmax ¼ �f , then f 0 ¼ fmax and lc will be equal
to k3. The value of lc is increased when the better of the two chromosomes to be crossed is itself quite poor. In contrast when
it is a good solution, lc is low so as to reduce the likelihood of disrupting a good solution by crossover.
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3.6. Mutation

Mutation is applied on each chromosome with probability lm. Mutation is of three types:

(1) Each cluster center encoded in a chromosome is replaced with a random variable drawn from a Laplacian distribution,
pð�Þ / e�

j��lj
d , where the scaling factor d sets the magnitude of perturbation. Here, l is the value at the position which is

to be perturbed. The scaling factor d is chosen equal to 1.0. The old value at the position is replaced with the newly
generated value. Here, this type of mutation operator is applied for all dimensions independently.

(2) One randomly generated cluster center is removed from the chromosome, i.e., the total number of clusters encoded in
the chromosome is decreased by 1.

(3) The total number of clusters encoded in the chromosome is increased by 1. One randomly chosen point from the data
set is encoded as the new cluster center.

Any one of the above-mentioned types of mutation is applied randomly on a particular chromosome if it is selected for
mutation.

The mutation probability is selected adaptively for each chromosome as in Ref. [46]. Let fmax be the maximum fitness va-
lue of the current population, �f be the average fitness value of the population and f be the fitness value of the solution to be
mutated. The expression for mutation probability, lm, is given below:
Table 1
Results
index. H

Name

Sym 3 2
Ring 3
Data 10
Data 9
Iris
Cancer
Lungcan
Glass
lm ¼
k2 � ðfmax�f Þ

ðfmax��f Þ ; if f > �f ;

k4; if f 6 �f :

(

Here, values of k2 and k4 are kept equal to 0.5. This adaptive mutation helps GA to avoid getting stuck at local optimum.
When GA converges to a local optimum, i.e., when fmax � �f decreases, lc and lm both will be increased. As a result, GA will
come out of local optimum.

3.7. Termination

In this article, we have executed the algorithm for a fixed number of generations. Moreover, the elitist model of GAs has
been used, where the best string seen so far is stored in a location within the population. The best string of the last gener-
ation provides the solution to the clustering problem.

4. Implementation results and comparative study

For the experimental results, eight data sets are considered. These are categorized into two groups. The first group con-
sists of four artificial data sets and the second group consists of four real-life data sets obtained from [1]. A short description
of the data sets in terms of the number of data points present, dimension of the data set, number of clusters present in the
data set is provided in Table 1. The four artificial data sets are displayed in Fig. 2a–d. The first two artificial data sets, Sym_3_2
and Ring_3_2 contain a mixture of hyperspherical, ellipsoidal and ring-shaped clusters. Ring_3_2 also contains some non-
convex clusters. The last two artificial data sets, used in [5], contain overlapping clusters.

In the first part of the experimental results, we have shown the superiority of FSym-index as compared to PBMF-index
[42], a new fuzzy cluster validity index based on relative degree of sharing (Fuzzy-RDS) proposed in [33] and a modified ver-
sion of XB-index, XB* [32]. In all these cases, Fuzzy-VGAPS is used as the underlying partitioning method. The parameters of
the algorithm are as follows. The population size, P ¼ 100, number of generations = 50. Mutation and crossover probabilities
of the Fuzzy-VGAPS algorithm are selected adaptively as discussed earlier. The number of clusters automatically determined
by the proposed Fuzzy-VGAPS clustering optimizing the four indices are shown in Table 1. This table shows that Fuzzy-
VGAPS optimizing FSym-index is able to determine the appropriate number of clusters for all the data sets. The other indices
obtained with the different data sets using Fuzzy-VGAPS clustering algorithms optimizing FSym-index, PBMF-index, fuzzy cluster validity index, XB*-
ere AC denotes the actual number of clusters present in the data set.

No. of points Dimension AC Obtained number of clusters using

FSym PBMF Fuzzy-RDS XB*

600 2 3 3 6 3 2
2 350 2 3 3 8 16 4

2 500 2 10 10 11 19 2
2 900 2 9 9 7 6 4

150 4 3 3 3 9 2
683 9 2 2 4 17 2

cer 32 56 3 3 3 3 3
214 9 6 6 7 12 2
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Fig. 2. (a) Sym_3_2; (b) Ring_3_2; (c) Data_10_2; (d) Data_9_2.
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are able to do so for only two data sets. Thus it can be concluded that Fuzzy-VGAPS optimizing FSym-index definitely has an
edge over the others in identifying the appropriate number of clusters and the appropriate partitioning for point symmetric
type of clusters.

In the second part of the experimental results, Fuzzy-VGAPS clustering technique optimizing FSym-index is compared
with seven recent clustering techniques:

� Fuzzy-VGA [39], optimizing well-known XB-index [49].
� A crisp algorithm: well-known K-means clustering technique with newly developed point symmetry based distance

(PSKM). This algorithm follows the basic steps of SBKM proposed in [47] but uses newly developed point symmetry based
distance, dps [6]. It a priori assumes the number of clusters present in a data set.

� An adaptation of Fuzzy C-means algorithm using the proposed symmetry distance (PSFCM) to evaluate the advantage pro-
vided by the genetic approach. It also assumes a priori the number of clusters present in a data set.

� A recently developed fuzzy genetic clustering technique: multistage random sampling genetic algorithm based Fuzzy C-
means clustering algorithm (GMFCM) developed in Ref. [19]. It also assumes a priori the number of clusters present in a
data set.

� A recently developed fuzzy variant of an evolutionary algorithm for clustering (EAC-FCM) [14], which uses a fuzzy cluster
validity index, fuzzy silhouette [13] and a fuzzy local search algorithm.

� Hybrid centroid–medoid heuristics (Hybrid) [26]: this is an enhancement of k-means clustering technique where local
search is used to accelerate convergence without greatly increasing the number of iterations. It also assumes a priori
the number of clusters present in a data set.

� A shape based clustering technique, SPARCL [16]. It also assumes a priori the number of clusters present in a data set.

The parameters of the Fuzzy-VGA clustering technique are as follows: the population size = 100, total number of gener-
ations = 20, probability of mutation = 0.01 and probability of crossover = 0.8. Both K-means algorithm with point symmetry
based distance (PSKM) and Fuzzy C-means with point symmetry based distance (PSFCM) clustering techniques are executed
until they converged. Here number of clusters ðKÞ is set equal to the number of clusters identified by FSym-index for a par-
ticular data set. For GMFCM and EAC-FCM, population size is kept equal to 100. In GMFCM, the other parameters are set as
specified in Ref. [19]. For GMFCM again the number of clusters is kept equal to the number of clusters identified by FSym-
index. In Fuzzy-VGAPS, Fuzzy-VGA and EAC-FCM while generating the initial population the maximum value of the number
of clusters is kept equal to

ffiffiffi
n
p

where n is the total number of points present in the data set, and the fuzzifier m ¼ 2:0. For
SPARCL, the results are obtained from the respective authors. Thus, it was available for only one run for all data sets except
Lungcancer. Authors did not execute their code on Lungcancer due to its higher dimensional nature. For all data sets, the ac-
tual number of clusters present in the data set and those obtained by the three algorithms, Fuzzy-VGA, EAC-FCM and Fuzzy-
VGAPS, which can determine K automatically, are shown in Table 2. The results of the other algorithms, i.e., which assume a
fixed K, are shown visually.



Table 2
Results obtained with the different data sets using Fuzzy-VGAPS, Fuzzy-VGA and EAC-FCM clustering algorithms.

Name Actual number of clusters Obtained number of clusters

Fuzzy-VGAPS Fuzzy-VGA EAC-FCM

Sym 3 2 3 3 2 16
Ring 3 2 3 3 4 11
Data 10 2 10 10 16 7
Data 9 2 9 9 16 7
Iris 3 3 2 3
Cancer 2 2 2 2
Lungcancer 2 2 5 3
Glass 6 6 6 2
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Fig. 3. Clustering results on Sym_3_2 by (a) Fuzzy-VGAPS providing K ¼ 3; (b) PSKM for K ¼ 3; (c) PSFCM for K ¼ 3; (d) GMFCM for K ¼ 3; (e) Hybrid
algorithm for K ¼ 3; (f) SPARCL algorithm for K ¼ 3.

S. Saha, S. Bandyopadhyay / Information Sciences 179 (2009) 3230–3246 3239
4.1. Discussion of results

� Sym_3_2: This data set is designed to test whether the proposed Fuzzy-VGAPS clustering is able to detect automatically
some hyper-ellipsoidal shaped clusters. As is evident from Table 2, Fuzzy-VGAPS clustering is able to detect automatically
the proper number of partitions and the proper partitioning from this data set as the clusters present here are symmetrical
in shape. The corresponding partitioning is shown in Fig. 3a. Fuzzy-VGA is not able to detect the proper partitioning
because clusters are not hyperspherical in nature (refer to Table 2). The partitionings obtained by PSKM, PSFCM and
GMFCM for K ¼ 3 (number of clusters identified by Fuzzy-VGAPS) for this data set are shown in Fig. 3b–d, respectively.
EAC-FCM indicates K ¼ 16 as the proper number of clusters as clusters present in this data set are not hyperspherical
in nature (refer to Table 2). The partitionings indicated by the Hybrid clustering technique [26] and SPARCL clustering
technique [16] are shown in Fig. 3e and f, respectively. SPARCL is not able to detect the overlapping clusters correctly.

� Ring_3_2: This data set is generated to show that Fuzzy-VGAPS is able to detect automatically different shaped clusters
present in a data set as long as they are point symmetric. Fuzzy-VGAPS clustering is able to automatically detect the
proper number of partitions (shown in Table 2) and the proper partitioning from this data set as clusters present here have
‘‘symmetrical” structure. The partitioning is shown in Fig. 4a. As the data set contains non-convex clusters, Fuzzy-VGA is
not able to detect the proper partitioning (refer to Table 2). The partitioning obtained by PSKM, PSFCM and GMFCM for
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Fig. 4. Clustering results on Ring_3_2 by (a) Fuzzy-VGAPS providing K ¼ 3; (b) PSKM for K ¼ 3; (c) PSFCM for K ¼ 3; (d) GMFCM for K ¼ 3; (e) Hybrid
algorithm for K ¼ 3; (f) SPARCL algorithm for K ¼ 3.
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K ¼ 3 (number of clusters identified by Fuzzy-VGAPS) for this data set are shown in Fig. 4b–d, respectively. EAC-FCM auto-
matically indicates K ¼ 11 as the proper number of clusters as clusters present in this data set are not hyperspherical in
nature (refer to Table 2). The partitionings indicated by the Hybrid clustering technique [26], and SPARCL clustering tech-
nique [16] for this data set are shown in Fig. 4e and f, respectively. Hybrid clustering technique, in general, fails to detect
non-hyperspherical shaped clusters. SPARCL is again not able to detect the overlapping clusters correctly.

� Data_10_2: This data set is used to test the performance of the proposed Fuzzy-VGAPS clustering technique for some over-
lapping clusters. Fuzzy-VGAPS is able to automatically detect the proper partitioning and the proper number of partitions
from this data set. The corresponding partitioning is shown in Fig. 5a. This result shows that the fuzzy characteristics of
the proposed Fuzzy-VGAPS is used to make the partition more flexible and thus it can handle overlapping clusters. Fuzzy-
VGA automatically indicates K ¼ 16 as the proper number of clusters (refer to Table 2). The partitionings obtained by
PSKM, PSFCM, GMFCM, Hybrid and SPARCL clustering techniques for K ¼ 10 (number of clusters identified by Fuzzy-
VGAPS) for this data set are shown in Fig. 5b–f, respectively. EAC-FCM indicates K ¼ 7 as the proper number of clusters
(refer to Table 2).

� Data_9_2: This data set is used to show that the proposed Fuzzy-VGAPS is able to automatically detect highly overlapping
clusters. Fuzzy-VGAPS is able to detect the proper number of partitions from this data set. The corresponding partitioning
is shown in Fig. 6a. This result again clearly illustrates the fuzzy characteristics of the proposed Fuzzy-VGAPS in detecting
more overlapping clusters. Fuzzy-VGA automatically indicates K ¼ 16 as the proper number of clusters (refer to Table 2).
The partitioning obtained by PSKM, PSFCM and GMFCM for K ¼ 9 (number of clusters identified by Fuzzy-VGAPS) for this
data set are shown in Fig. 6b–d, respectively. EAC-FCM indicates K ¼ 7 as the proper number of clusters (refer to Table 2).
The partitionings indicated by the Hybrid and SPARCL clustering techniques for this data set are shown in Fig. 6e and f,
respectively.

� Iris: For real-life data sets, no visualization is possible as these are higher dimensional data sets. For these data sets, the
Minkowski Scores [7] are reported for each algorithm. This is a measure of the quality of a solution given the true cluster-
ing. Let T be the ‘‘true” solution and S the solution we wish to measure. Denote by n11 the number of pairs of elements that
are in the same cluster in both S and T. Denote by n01 the number of pairs that are in the same cluster only in S, and by n10

the number of pairs that are in the same cluster in T. Minkowski Score (MS) is then defined as:

MSðT; SÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n01 þ n10

n11 þ n10

r
: ð22Þ

For MS, the optimum score is 0, with lower scores being ‘‘better”. The MS-scores and their variances provided by the se-
ven clustering algorithms for these four data sets are reported in Table 3. Statistical analysis of variance (ANOVA) [4] is
performed for the real-life data sets on the combined MS values of all the algorithms when each is executed ten times. For
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Fig. 5. Clustering results on Data_10_2 by (a) Fuzzy-VGAPS providing K ¼ 10; (b) PSKM for K ¼ 10; (c) PSFCM for K ¼ 10; (d) GMFCM for K ¼ 10; (e) Hybrid
algorithm for K ¼ 10; (f) SPARCL algorithm for K ¼ 10.
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Fig. 6. Clustering result on Data_9_2 by (a) Fuzzy-VGAPS providing K ¼ 9; (b) PSKM for K ¼ 9; (c) PSFCM for K ¼ 9; (d) GMFCM for K ¼ 9; (e) Hybrid
algorithm for K ¼ 9; (f) SPARCL algorithm for K ¼ 9.
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SPARCL, the results are obtained from the respective authors. Thus, it was available for only one run for all data sets ex-
cept Lungcancer. Authors did not execute their code on Lungcancer due to its higher dimensional nature.



Table 3
Estimated marginal means and variances of Minkowski Scores of seven algorithms obtained for four real-life data sets.

Data set Minkowski Score

Fuzzy-VGAPS Fuzzy-VGA PSKM PSFCM GMFCM EAC-FCM Hybrid SPARCL

Iris 0:62� 0:001 0:85� 0:002 0:65� 0:02 0:62� 0:024 0:52� 0:024 0:77� 0:033 0:82� 0:003 0.57
Cancer 0:32� 0:0004 0:39� 0:0001 0:37� 0:021 0:33� 0:0021 0:31� 0:0021 0:39� 0:00234 0:35� 0:00345 0.33
Lungcancer 0:82� 0:001 1:13� 0:003 0:84� 0:0022 0:88� 0:0132 0:90� 0:0012 1:15� 0:0021 1:39� 0:0043 –
Glass 1:01� 0:001 1:25� 0:002 1:11� 0:012 1:12� 0:023 1:11� 0:021 1:32� 0:0023 1:14� 0:031 1.17
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As is evident from Table 2, Fuzzy-VGAPS is able to automatically determine the proper number of clusters from this data
set. Fuzzy-VGA automatically determines two clusters from this data set, which is also often obtained for many other
methods for Iris. The MS-score corresponding to the partitioning provided by Fuzzy-VGAPS compared to that of Fuzzy-
VGA (refer to Table 3) is also the minimum. ANOVA tests show that the difference in mean MS-scores of Fuzzy-VGAPS
with Fuzzy-VGA clustering is significant. These again reveal that the partitioning provided by Fuzzy-VGAPS is better than
that of Fuzzy-VGA. EAC-FCM also automatically determines three clusters from this data set. But the corresponding MS-
score (shown in Table 3) is worse than that of Fuzzy-VGAPS. The MS-scores of the partitionings provided by PSKM,
PSFCM, GMFCM, Hybrid and SPACL for K ¼ 3 (number of partitions identified by Fuzzy-VGAPS) are also provided in Table
3. ANOVA analysis reveals that the performance of both Fuzzy-VGAPS and PSFCM are same for this data set. Table 3 shows
that GMFCM performs the best for this data set in terms of MS-score. Hybrid clustering technique attains a higher MS
value for this data set (refer to Table 3). But SPARCL attains a smaller MS-score for this particular data set.

� Cancer: Here we use the Wisconsin Breast Cancer data set, consists of 683 sample points. Each pattern has nine features.
There are two categories in the data: malignant and benign. The two classes are known to be linearly separable. For this data
set, all the three algorithms, Fuzzy-VGAPS, Fuzzy-VGA and EAC-FCM, are able to determine the proper number of clusters
(refer to Table 2). But the MS-score corresponding to Fuzzy-VGAPS is the minimum (refer to Table 3) and ANOVA analysis
shows that this improvement is statistically significant. This again shows that the partitioning obtained by Fuzzy-VGAPS
clustering is better than that of Fuzzy-VGA and EAC-FCM. PSKM, PSFCM, GMFCM, Hybrid and SPACL algorithms are also exe-
cuted on this data set with K ¼ 2 (number of partitions identified by Fuzzy-VGAPS) and the corresponding MS-scores are
also reported in Table 3. Table 3 shows that Fuzzy-VGAPs and PSFCM again perform similarly for this data set and this is
also verified after ANOVA analysis. It is also revealed from Table 3 that GMFCM again performs the best for this data set
in terms of MS-score. Hybrid and SPARCL clustering techniques attain slightly higher MS values for this data set.

� Lungcancer: This data consists of 32 instances having 56 features each. The data describes three types of pathological lung
cancers. It can be seen from Table 2 that only Fuzzy-VGAPS is able to find out the proper number of clusters from this data
set. The MS-scores, reported in Table 3, again demonstrate the superior performance of Fuzzy-VGAPS over Fuzzy-VGA and
EAC-FCM for automatically detecting the proper partitioning from a data set. PSKM, PSFCM, GMFCM, Hybrid and SPACL
algorithms are also executed on this data set with K ¼ 2 (number of partitions identified by Fuzzy-VGAPS) and the cor-
responding MS-scores are also reported in Table 3. Table 3 shows that Fuzzy-VGAPS performs the best for this data set
in terms of MS-score. ANOVA statistical analysis is also done here. The analysis (results shown in Table 3) shows that
the mean MS differences of all the algorithms are statistically significant.

� Glass: This is the glass identification data consisting of 214 instances having 9 features (an Id feature has been removed).
There are six categories present in this data set. Both Fuzzy-VGAPS and Fuzzy-VGA clustering algorithms are able to detect
the proper number of partitions from this data set. But the MS-score (as shown in Table 3) corresponding to the partition-
ing provided by Fuzzy-VGAPS clustering is less than that of Fuzzy-VGA clustering. ANOVA analysis shows that the mean
MS differences of both the algorithms are statistically significant. EAC-FCM automatically determines two clusters from
this data set and the MS-score corresponding to this partitioning is provided in Table 3. PSKM, PSFCM, GMFCM, Hybrid
and SPACL clustering techniques are also executed on this data set with K ¼ 6 (number of partitions identified by
Fuzzy-VGAPS) and the corresponding MS-scores are also reported in Table 3. Table 3 shows that Fuzzy-VGAPS again per-
forms the best for this data set in terms of MS-score.

Summary of results
It can be observed from the above results that the proposed Fuzzy-VGAPS is able to determine automatically the proper

number of partitions and the proper partitioning from a wide variety of data sets having any type of similar density clusters,
irrespective of their geometrical shape and overlapping nature, as long as they possess the characteristic of symmetry. Note
that it will fail for data sets where clusters do not have any point symmetry property (where the other algorithms will fail as
well). The PSKM and PSFCM clustering algorithms are based on local search and hence they may often get stuck at local
optima depending on the choice of the initial cluster centers. The use of genetic algorithm and the newly proposed cluster
validity index, FSym-index, in Fuzzy-VGAPS enables it to detect automatically the number of clusters present in a data set.
The results now clearly illustrate the properties of the proposed Fuzzy-VGAPS. Results on Data_10_2 and Data_9_2 show that
the fuzzy characteristics of the proposed method make the partitions more flexible and thus enable it to handle more over-
lapping clusters. Fuzzy-VGA and EAC-FCM, two recently developed fuzzy clustering techniques for automatically determin-
ing the number of clusters, succeed for only data sets having hyperspherical clusters. They cannot detect the proper number
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of clusters from data sets having some symmetrical clusters other than hyperspheres. But Fuzzy-VGAPS succeeds in such
situations. Hybrid clustering technique is also able to detect only hyperspherical shaped clusters but it fails for non-hyper-
spherical shaped clusters. SPACL clustering technique can detect any shaped clusters only when the clusters are well-sepa-
rated and also when the dimensionally is low. Thus it fails for overlapping clusters. Moreover, both Hybrid and SPARCL
clustering techniques cannot determine the number of clusters automatically from a data set. Based on these observations,
and the fact that the property of symmetry is widely evident in real-life situations, application of Fuzzy-GAPS in most clus-
tering tasks seems justified and is therefore recommended.
4.2. Complexity analysis of Fuzzy-VGAPS clustering technique

Below we have analyzed the time complexity of the proposed Fuzzy-VGAPS clustering technique:

� As discussed above Kd-tree data structure has been used in order to find the nearest neighbor of a particular point. The
construction of Kd-tree requires OðN log NÞ time and OðNÞ space [3].

� Initialization of GA needs OðPopsize� stringlengthÞ time where Popsize and stringlength indicate the population size and the
length of each chromosome in the GA, respectively. Note that stringlength is OðM� � dÞ where d is the dimension of the
data set and M� is the soft estimate of the upper bound of the number of clusters.

� Fitness computation is composed of three steps:
(1) In order to find membership values of each point to all cluster centers minimum symmetrical distance of that point

with respect to all clusters have to be calculated. For this purpose the Kd-tree based nearest neighbor search is used.
If the points are roughly uniformly distributed, then the expected case complexity is Oðcd þ log NÞ, where c is a con-
stant depending on dimension and the point distribution. This is Oðlog NÞ if the dimension d is a constant [8]. Fried-
man et al. [24] also reported Oðlog NÞ expected time for finding the nearest neighbor. So in order to find minimal
symmetrical distance of a particular point, OðM� log NÞ time is needed. Thus total complexity of computing member-
ship values of N points to M� clusters is OðM�N log NÞ.

(2) For updating the centers total complexity is OðM�Þ.
(3) Total complexity for computing the fitness values is OðN �M�Þ.
So the fitness evaluation has total complexity = O(Popsize �M*NlogN).

� Selection step of the GA requires OðPopsize� stringlengthÞ time.
� Mutation and Crossover require OðPopsize� stringlengthÞ time each.

Thus summing up the above complexities, and considering stringlength� N, total time complexity becomes OðM�N log N�
PopsizeÞ per generation. For maximum Maxgen number of generations total complexity becomes OðM�N log N � Popsize�
MaxgenÞ.

Time complexity of Fuzzy-VGA [39] is OðM�N � Popsize�MaxgenÞ. Time complexities of PSKM and PSFCM are
OðKN � TotalIterÞ where TotalIter is the total number of iterations and K is the total number of clusters present in the data
set. Similarly the time complexity of EAC-FCM [14] is OðM�2 � N � Popsize�Maxgen� tÞ, where t is the total number of iter-
ations performed by FCM clustering technique.
4.3. Clustering gene expression data

In this section we demonstrate the effectiveness of the proposed clustering algorithm, Fuzzy-VGAPS to automatically
cluster a real-life gene expression data set. For this purpose, the Eisen data set (gene expression data of yeast) [22] is con-
sidered. The percentage of missing values in the data set is 1.93% which have been estimated using the BPCA method [41].
The data set has been divided into six different subsets based on the type of experiments. Total number of genes in each data
set is 2467 and number of experiments (i.e., number of columns) are 18, 14, 11, 14, 15 and 7, respectively. Comparison is
made with another popular gene clustering technique, information based clustering (Iclust) [45]. The biological significance
is verified by computing the z-score [25]. Higher values of z-score indicate better results. The z-score values of the partiti-
onings obtained by Fuzzy-VGAPS for these six data sets are, respectively, 13.1, 16.6, 38.9, 25.2, 33.6 and 47.9, while those
obtained by Iclust are 14.3, 13.4, 24.3, 15.4, 10.1 and 25.7, respectively. In order to quantify the goodness of the obtained
partitionings by the two algorithms, Silhouette index [43] values are also calculated. Higher values of Silhouette index
[43] indicate better partitioning. Fuzzy-VGAPS attains Silhouette values of �0.5181, 0.1740, 0.1923, 0.1395, 0.1626 and
0.1208, respectively. While Iclust attains Silhouette values of �0.1863, �0.1911, �0.2577, �0.1414, �0.4920 and �0.1735,
respectively. Thus the values of z-scores and Silhouette indices show that except for the first set, in general Fuzzy-VGAPS
performs much better than Iclust for clustering gene expression data.

4.4. Application to MR brain image segmentation

Fully automatic brain tissue classification from magnetic resonance images (MRI) is of great importance for research and
clinical study of much neurological pathology. The accurate segmentation of MR images into different tissue classes, espe-



Table 4
Minkowski Scores (MS) obtained by Fuzzy C-means (FCM), Expectation Maximization (EM), Fuzzy-VGAPS and Fuzzy-VGA clustering algorithms on simulated
MR volumes for brain with multiple sclerosis lesions projected on different z planes. Here #AC, #OC denotes, respectively, the actual number of clusters and the
automatically obtained number of clusters (after application of Fuzzy-VGAPS and Fuzzy-VGA).

z plane no. AC FCM MS EM MS Fuzzy-VGA Fuzzy-VGAPS

OC MS OC MS

1 6 0.59 0.59 2 1.21 10 0.58
2 6 0.75 0.76 2 1.20 10 0.58
3 6 0.74 0.76 2 1.19 7 0.71
4 6 0.87 0.88 5 0.69 5 0.67
5 6 0.76 0.79 2 1.184 6 0.62
6 6 0.80 0.81 2 1.18 3 0.71
7 6 0.79 0.78 0.80 1.17 6 0.70
8 6 0.78 0.77 2 1.16 6 0.71
9 6 0.82 0.83 2 1.16 6 0.68

10 9 0.79 0.81 2 1.17 9 0.65
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Fig. 7. (a) Original T1-weighted MR image of the brain with multiple sclerosis lesions in z2 plane. (b) Segmentation obtained by Fuzzy-VGAPS.
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cially gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF), is an important task. In this paper the problem of
automatic partitioning MR brain images is posed as the clustering in the intensity space. The proposed Fuzzy-VGAPS clus-
tering technique is applied to automatically segment MR brain images with multiple sclerosis lesions. The proposed algo-
rithm is executed on some simulated MRI volumes for brain with multiple sclerosis lesions obtained from [2]. These
images are available in three modalities and correspond to 1 mm slice thickness, 3% noise (calculated relative to the brightest
tissue) and with 20% intensity non-uniformity. The image of size 217� 181 is available in 181 different z planes. The images
contain a total of 11 classes. However, the number of classes varies along the z planes. For this MR brain image, the ground
truth information is available to us. In order to measure the segmentation solution quantitatively, we have also calculated
Minkowski Score (MS) [7].

Fuzzy-VGAPS without adaptive crossover and mutation operators (crossover probability = 0.9, mutation probabil-
ity = 0.01) is executed on the first 10 z planes of the MR brain images with multiple sclerosis lesions. The automatically deter-
mined number of partitions and the corresponding MS-scores are provided in Table 4. It is evident that for most of the planes
Fuzzy-VGAPS is able to detect the near-optimal partitionings. Fig. 7a shows the original MS Lesion Brain image in T1 band
projected on z2 plane just for an illustration. Fig. 7b shows the corresponding automatically segmented image obtained after
application of Fuzzy-VGAPS clustering algorithm. The results are then compared with those obtained by Fuzzy-VGA [39]. The
number of clusters and the corresponding MS-scores obtained by Fuzzy-VGA after applying it on the first 10 z planes of the
MR brain images with multiple sclerosis lesions are also provided in Table 4. Results show that the proposed Fuzzy-VGAPS is
more effective than Fuzzy-VGA for automatically segmenting the MR brain images. For the purpose of comparison, we have
also executed two popular partitioning techniques Fuzzy C-means [10] and Expectation Maximization (EM) [30] on the
above-mentioned brain data sets with K is set as the actual number of clusters present in that particular plane. The corre-
sponding MS-scores are also reported in Table 4. Results show that the MS-score corresponding to the partitioning provided
by Fuzzy-VGAPS clustering, in general, is the minimum among all the partitions. This implies the superior performance of
Fuzzy-VGAPS for automatically detecting the proper partitioning from the MR brain images.

5. Discussion and conclusions

In this article a variable string length genetic point symmetry based fuzzy clustering technique, Fuzzy-VGAPS, is pro-
posed. It utilizes a new symmetry based fuzzy cluster validity index, FSym-index. The characteristic features of the proposed
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Fuzzy-VGAPS clustering technique which distinguishes it from the state-of-the-art approaches are as follows. Use of variable
string length GA allows the encoding of a variable number of clusters. The FSym-index, used as the fitness function, provides
the most appropriate partitioning even when the number of clusters, K, is varied. Moreover, clusters of any shape (e.g.,
hyperspherical, linear, ellipsoidal, ring shaped, etc.) and size (mixture of small and large clusters, i.e., clusters of unequal
sizes) as long as they satisfy the property of point symmetry can be detected. Again use of GA enables the algorithm to come
out of local optima, a typical problem associated with local search methods like K-means and FCM. The effectiveness of the
proposed Fuzzy-VGAPS clustering technique as compared to seven different clustering techniques, Fuzzy-VGA clustering
algorithm, EAC-FCM clustering algorithm, K-means clustering technique with point symmetry based distance (PSKM), Fuzzy
C-means clustering technique with point symmetry based distance (PSFCM), genetic algorithm based fuzzy C-means clus-
tering technique, GMFCM, a hybrid centroid–medoid clustering technique and a shape based clustering technique, SPARCL
are shown for eight data sets. The stability of the clustering technique has also been analyzed by applying it on a particular
data set with different initial seeds. For all the experimental data sets it has been found that the proposed technique is stable
irrespective of the initial seeds used. Some real-life applications of Fuzzy-VGAPS to automatically cluster the gene expression
data as well as segmenting the magnetic resonance brain image with multiple sclerosis lesions are also demonstrated. Note
that Fuzzy-VGAPS is not applicable for data sets not containing point symmetric clusters (where the other algorithms will
also fail). The point symmetry based distance considered in this paper requires the calculation of nearest neighbors for its
computation. Thus for high-dimensional data sets, point symmetry based distance will take much time to compute. There-
fore the proposed technique will not be suitable to handle large dimensional data sets efficiently.

Face recognition from images is an interesting future research topic where the properties of symmetry is expected to be
beneficial.
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