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a b s t r a c t

Entity extraction is one of the most fundamental and important tasks in biomedical information extrac-
tion. In this paper we propose a two-stage algorithm for the extraction of biomedical entities in the forms
of genes and gene product mentions in text. Several different approaches have emerged but most of these
state-of-the-art approaches suggest that individual system may not cover entity representations with
arbitrary set of features and cannot achieve best performance. We identify and implement a diverse
set of features which are relevant for the identification of biomedical entities and classification of them
into some predefined categories. One most important criterion of these features is that these are identified
and selected largely without using any domain knowledge. In the first stage we use a genetic algorithm (GA)
based feature selection technique to determine the most relevant set of features for Support Vector
Machine (SVM) and Conditional Random Field (CRF) classifiers. The GA based feature selection algorithm
produces best population that can be used to generate different classification models based on CRF and
SVM. In the second stage we develop a stacked based ensemble to combine the classifiers selected in the
first stage. The proposed approach is evaluated on two benchmark datasets, namely JNLPBA 2004 shared
task and GENETAG. The proposed approach yields the overall F-measure values of 75.17% and 94.70% for
JNLPBA 2004 and GENETAG data sets, respectively.

� 2013 Published by Elsevier B.V.
1. Introduction

Biological research literature is one of the vital databases of
knowledge [1]. One important biomedical research database is
MEDLINE which has over 14 million abstracts, with 60,000 new ab-
stracts appearing each month. All of these resources are largely
annotated manually paying enormous expense. Thus developing
some automatic techniques to solve problems such as tokeniza-
tion, entity extraction, topic classification, word sense disambigu-
ation etc. in the biomedical domain (cf. MEDLINE’s Indexing
Initiative [2]) is very much essential.

The past history of text mining (TM) shows the great success of
different evaluation challenges based on carefully curated re-
sources. All these challenges have significantly contributed to the
progress of their respective fields. This has also been similar for
bio-text mining (bio-TM). Some of the bio-text mining evaluation
challenges include the LLL [3] and BioCreative [4]. The first two
shared tasks addressed the issues of bio-information retrieval
(bio-IR) and bio-Named Entity Recognition (bio-NER), respectively.
The JNLPBA and BioCreative evaluation campaigns were associated
with the bio-information extraction (bio-IE). These two addressed
the issues of seeking relations between bio-molecules. With the
Elsevier B.V.
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emergence of named entity (NE) extraction systems with perfor-
mance capable of supporting practical applications, the recent
interest of the bio-TM community is shifting toward information
extraction (IE).

Entity extraction in the biomedical domain is an important
component for many advanced and popular information extraction
tasks like automatic extraction of protein–protein interaction
information. But the inherent complex structures of biomedical
entities make this task more difficult and challenging. Millions of
ambiguous genes exist and simultaneously new genes are created.
So, finding these genes are not too easy in biomedical domain.
Applying information extraction in this domain has been growing
research area over years. And for implementing this task, the initial
step is to identify gene and protein names in the text, and if re-
quired classify them into further sub-classes. In BioCreative-I, the
first challenge was carried out in 2003 and the workshop was held
in 2004. There were 15 participants in this shared task. The highest
F-measure for the gene mention detection was 82.2%. The second
BioCreative challenge (BioCreative-II)2 was held in 2006. The chal-
lenge addressed the tasks of gene mention detection, gene normali-
zation and protein–protein interaction. The highest accuracy for this
task among the participants of this competition is 87.21 F-measure
for the gene mention detection [5]. The BioCreative organization is
motivated by the increasing number of groups working in this field.
2 http://biocreative.sourceforge.net/.
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3 ftp://ftp.ncbi.nlm.nih.gov/pub/tanabe/GENEATG.tar.gz.
4 B, I and and O denote the beginning token, intermediate token (s) and outside

token of a NE.
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In [6], a named entity (NE) extraction, especially for gene name
identification from the biomedical domain, is proposed. A new
edit-distance measure is used as a feature to resolve the spelling
variant problem. Support Vector Machine (SVM) is used as the
underlying machine learning technique. Additionally an expansion
method using virtual examples is used to increase the training set
size. This helps in improving the recall of the whole system. An-
other SVM based gene mention identification system is developed
in [7]. Several different features and combinations of features, such
as n-grams, neighborhood defined by a sliding window, classifica-
tion results of preceding words, appearance of special characters or
digits, or appearance of the word in a dictionary are used. Multi-
word entity names are gathered in a context-sensitive post-pro-
cessing step. In another work by Mitsumori et al. [8], a SVM based
gene mention detection system is developed which uses some lex-
ical features and a gene/protein name dictionary collected from
SWISS-PORT and TrEMBL. Among other machine learning tech-
niques, Maximum Entropy (ME) and Conditional Random Field
(CRF) are more popular. A ME-based system for gene mention
detection and classification (i.e. entity extraction) is developed in
[9], where a rich set of features derived from the training data at
multiple levels of granularity while focussing on correctly identify-
ing entity boundaries are used. Additionally several external
knowledge sources including full MEDLINE abstracts and web
searches are used to further improve the performance. A CRF-based
approach is developed in [10] to extract gene names. A diverse fea-
ture set containing standard orthographic features combined with
expert features in the form of gene and biological term lexicons is
used to solve gene mention extraction problem. An ensemble
based technique is developed in [11] in which three classifiers,
one based on SVM and two others based on discriminative hidden
Markov model (HMM), are combined effectively using a simple
majority voting strategy. Moreover three post-processing modules,
including an abbreviation resolution module, a protein/gene name
refinement module and a simple dictionary matching module, are
also incorporated into the system to further improve the
performance.

The performance of any classification technique depends on the
features used to represent training and test patterns. Feature selec-
tion [12,13] is the technique of automatically selecting a subset of
relevant features for any classifier in order to build the robust
learning models. This is also termed as attribute selection/ subset
selection etc. Feature selection helps to improve the performance
of a classifier. Classifier ensembles have been a fruitful research
direction in machine learning in recent years. It is an effective
method to increase the generalization accuracy. Ensemble com-
bines the results of many classifiers; thus helps to overcome the
possible drawbacks of individual classifiers and produces a more
stable result. An important issue in classifier ensemble is that the
classifiers should be as much diverse as possible in nature. This
can be achieved by using different feature sets or different training
sets to homogeneous classifiers, as well as using different classifi-
cation principles for each of the individual classifiers, i.e. using
heterogenous classifiers. An ensemble may be thought of as a
supervised learning algorithm because it can be used to predict
the outputs of test samples. As ensemble combines the outputs
of many classifiers it is more effective than the base classifiers. In
many cases it often overcomes the drawback of individual systems.

In this paper we focus on the problem of entity extraction,
where gene/gene product names have to be identified and classi-
fied according to some shallow semantic categories. We propose
a two-stage approach, the first stage of which deals with a genetic
algorithm (GA) [14] based feature selection, and in the second
stage we propose a stacked based ensemble [15] technique. Stack-
ing [15] is an important classifier ensemble technique which fol-
lows a layered architecture. At the very first level, classifiers are
trained using the original dataset and each classifier outputs a pre-
diction for each token. Successive layers receive the predictions of
the layer immediately preceding it as an input. Finally at the top
level, a single classifier, also called meta-classifier, outputs the final
prediction. We identify a very rich and effective feature set that in-
cludes variety of features based on orthography, local contextual
information and global contexts. One most important characteris-
tic of our system is that the identification and selection of features
are mostly done without any deep domain knowledge and/or external
resources. As classification methods we use Conditional Random
Field (CRF) and Support Vector Machine (SVM). The GA based fea-
ture selection technique is used to select appropriate feature com-
binations for each of CRF and SVM. Finally it produces a set of
solutions on the best population. These solutions represents differ-
ent feature combinations for CRF and SVM based models. Some of
these solutions are best with respect to recall and some are good
with respect to precision. These are used as the base classifiers. In
the second step we use CRF as a meta classifier. This takes as the
features the predicted values of all the base level classifiers along
with the original features.

The proposed system is evaluated on two benchmark datasets,
namely GENETAG3 and JNLPBA 2004 shared task [16]. In GENETAG,
the training dataset contains 7500 sentences with 8881 gene men-
tions. The average length per protein (or, gene) mention is 2.1 to-
kens. The test dataset consists of 2500 sentences with 2986 gene
mentions. Gene names were annotated with three classes, namely
NEWGENE, NEWGENE1 and ‘‘others’’. In order to show that our sys-
tem is not limited to any particular domain, the proposed approach
is evaluated on the JNLPBA 2004 shared task datasets. The training
and test datasets contain 2000 and 404 MEDLINE abstracts of the
GENIA corpus, respectively. The training set has 18,546 sentences
with 492,551 wordforms, whereas test datasset contains 3856 sen-
tences with 101,039 wordforms. The datasets were annotated with
five NE classes, namely protein, DNA, RNA, cell_line and cell_type.
The datasets were boundary marked with the well-known IOB24 for-
mat. For each entity, two different tags (classes) result in 10 classes
for the NEs and one additional class for all non-NEs. Accordingly,
there are in total 11 potential classes.

Experiments with the GENETAG datasets yield the overall recall,
precision and F-measure values of 95.12%, 94.29% and 94.70%,
respectively. Evaluation results of our proposed system on the
JNLPBA-2004 data set show the recall, precision and F-measure
values of 75.15%, 75.20% and 75.17%, respectively. Experiments
suggest that our proposed system achieves performance superior
compared to all the individual classifiers as well as two conven-
tional baseline ensembles. Detailed comparisons exhibit that our
proposed approach achieves state-of-the-art accuracies for both
the domains. The key contributions of our work are (i). use of rich
and diverse features that are very effective for entity extraction;
(ii) problem specific feature selection for CRF and SVM using a
GA based technique; (iii). use of stack based model for classifier
ensemble that further improves the performance over the baseline
models; and (iv). proposal of a technique that can perform well
across various domains.

The rest of the paper is organized as follows. Section 2 describes
the diverse set of features that are very effective for entity extrac-
tion. Feature selection problem is formulated in Section 3. Section 4
describes the GA based feature selection technique for the specific
problem. In Section 5, we describe our proposed stacked based
ensemble technique. Detailed experiments along with evaluation
scheme and comparisons are reported in Section 6. Finally we con-
clude in Section 7 with future work road maps.
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2. Features for entity extraction

Feature selection plays an important role for the success of ma-
chine learning techniques. We identify a diverse set of features for
constructing the various models based on two robust machine
learning algorithms, namely CRF and SVM. These features are gen-
eral in nature and can also be applied for other biomedical do-
mains. Due to the use of variety of features, the individual
classifiers achieve very high accuracies.

1. Context words: These are the words occurring within the
context window wiþ3

i�3 ¼ wi�3 . . . wiþ3, wiþ2
i�2 ¼ wi�2 . . . wiþ2 and

wiþ1
i�1 ¼ wi�1 . . . wiþ1, where wi is the current word. This fea-

ture is considered with the observation that surrounding
words carry effective information for the identification of
NEs. We use GA to automatically determine the value in
the range of wiþ5

i�5 ¼ wi�5 . . . wiþ5.
2. Word prefix and suffix: These are the word prefix and suffix

character sequences of length up to n. The sequences are
stripped from the leftmost (prefix) and rightmost (suffix)
positions of the words. We set the feature values to ‘unde-
fined’ if either the length of wi is less than or equal to
n � 1, wi is a punctuation symbol or if it contains any special
symbol or digit. We experiment with n = 3 (i.e., 6 features)
and 4 (i.e., 8 features) both.

3. Word length: We define a binary valued feature that fires if
the length of wi is greater than a pre-defined threshold. Here,
the threshold value is set to 5. This feature captures the fact
that short words are likely not to be NEs.

4. Infrequent word: A list is compiled from the training data
by considering the words that appear less frequently than
a predetermined threshold. The threshold value depends
on the size of the dataset. Here, we consider the words hav-
ing less than 10 occurrences in the training data. Now, a fea-
ture is defined that fires if wi occurs in the compiled list. This
is based on the observation that more frequently occurring
words are rarely the NEs.

5. Part-of-Speech (PoS) information: PoS information is a
critical feature for entity extraction. In this work, we use
PoS information of the current and/or the surrounding
token(s) as the features. This information is obtained using
GENIA tagger5 V2.0.2, which is a freely available well-known
system used to extract PoS information from the biomedical
texts. The accuracy of the GENIA tagger is 98.26%. In the
GENETAG training and test datasets, PoS information were
provided only for the non-gene proteins. We preprocessed
this data and assigned the PoS class, NNP, i.e. proper noun
to each instance of gene.

6. Chunk information: We use GENIA tagger V2.0.2 to get the
chunk information. Chunk information (or, shallow parsing
features) provide useful evidences about the boundaries of
biomedical entities. In the current work, we use chunk infor-
mation of the current and/or the surrounding token(s).

7. Dynamic feature: Dynamic feature denotes the output tags
ti�3ti�2ti�1, ti�2ti�1, ti�1 of the word wi�3wi�2wi�1, wi�2wi�1,
wi�1 preceding wi in the sequence wn

1. This feature is used
for SVM model. For CRF, we consider the bigram template
that considers the combination of the current and previous
output labels.

8. Unknown token feature: This is a binary valued feature
that checks whether the current token was seen or not in
the training corpus. In the training phase, this feature is
set randomly.
5 http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/tagger.
9. Word normalization: We define two different types of fea-
tures for word normalization. The first type of feature
attempts to reduce a word to its stem or root form. This
helps to handle the words containing plural forms, verb
inflections, hyphen, and alphanumeric letters. The second
type of feature indicates how a target word is orthographi-
cally constructed. Word shapes refer to the mapping of each
word to their equivalence classes. Here each capitalized
character of the word is replaced by ‘A’, small characters
are replaced by ‘a’ and all consecutive digits are replaced
by ‘0’. For example, ‘IL’ is normalized to ‘AA’, ‘IL-2’ is normal-
ized to ‘AA-0’ and ‘IL-88’ is also normalized to ‘AA-0’.

10. Head nouns: Head noun is the major noun or noun phrase of
a NE that describes its function or the property. For example,
transcription factor is the head noun for the NE NF-kappa B
transcription factor. In comparison to other words in NE, head
nouns are more important as these play key role for correct
classification of the NE class. In this work, we use only the
unigram and bigram head nouns like receptor, protein, bind-
ing protein etc. For domain independence, we extract these
head nouns from the training data only. These are compiled
to generate a list of 912 entries that contain only the most
frequently occurring head nouns. Apart from these head
nouns, we also consider the unigrams and bigrams extracted
from the left ends of the NEs of the training data. A list of 578
entries is created by considering only the most frequent such
n-grams. A feature is defined that fires iff the current word
or the sequence of words appears in either of these lists.

11. Verb trigger: These are the special type of verb (e.g., binds,
participates etc.) that occur preceding to NEs and provide use-
ful information about the NE class. However, for the sake of
domain independence, we do not use a predefined list of trig-
ger words. Based on their frequencies of occurrences, these
trigger words are automatically extracted from the training
data. A feature is then defined that fires iff the current word
appears in the list of trigger words.

12. Word class feature: Certain kinds of entities, which belong
to the same class, are similar to each other. The word class
feature is defined as follows: For a given token, capital letters,
small letters, numbers and non-English characters are con-
verted to ‘‘A’’, ‘‘a’’, ’’O’’ and ‘‘-’’, respectively. Thereafter, the
consecutive same characters are squeezed into one character.
This feature will group similar names into the same NE class.

13. Informative words: In general, biomedical NEs are too long
and they contain many common words that are actually not
NEs. For example, the function words such as of, and etc.;
nominals such as active, normal etc. appear in the training
data often more frequently but these don’t help to recognize
NEs. In order to select the most important effective words,
we first list all the words which occur inside the multiword
NEs. Thereafter digits, numbers and various symbols are
removed from this list. For each word (wi) of this list, a
weight is assigned that measures how better the word is
to identify and/or classify the NEs. This weight is denoted
by NEweight (wi), and calculated as follows:
NEweightðwiÞ

¼ Total no: of occurances of wi as part of a NE
Total no: of occurances of wi ain the training data
The effective words are finally selected based on the two parame-
ters, namely NEweight and number of occurrences. The threshold val-
ues of these two parameters are selected based on some
experiments. The words which have less than two occurrences in-
side the NEs are not considered as informative. The remaining
words are divided into the following classes:

http://www.tsujii.is.s.u-tokyo.ac.jp/GENIA/tagger
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InitC
InCa
Digit
Digit
Hyph
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� Class 1: This includes the words that occur more than 100
times. Here, we consider those words whose NEweights
are greater than 0.4.

� Class 2: This includes the words having occurrences P20
and <100. Here, we set NEweight P 0.6.

� Class 3: This class includes the words having occurrences
P10 and <20. Here, we chose NEweight P 0.75.

� Class 4: This includes the words having occurrences
P5 < 10. Here, we chose NEweight P 0.85.

� Class 5: This includes the words having occurrences <5.
Here, we chose NEweight P 1.00.
We compile five different lists for the above five classes of informa-
tive words. A binary feature vector of length five is defined for each
word. If the current word in training (or, test) is found in any par-
ticular list then the value of the corresponding feature is set to 1.
This feature is a modification to the one used in [17].

14. Content words in surrounding contexts: This feature is
semantically motivated and exploits global context
information. This is based on the content words in the sur-
rounding context. We consider all unigrams in contexts
wiþ3

i�3 ¼ wi�3 . . . wiþ3 of wi (crossing sentence boundaries) for
the entire training data. We convert tokens to lower case,
remove stopwords, numbers, punctuation and special sym-
bols. We define a feature vector of length 10 using the 10 most
frequent content words. Given a classification instance, the
feature corresponding to token t is set to 1 if and only if the
context wiþ3

i�3 of wi contains t. Evaluation results show that this
feature is very effective to improve the performance by a great
margin. For the GENETAG test set we used the NE outputs pre-
dicted by the GENIA tagger to compute this feature. In contrast
we used the PoS information of test instances (extracted from
the GENIA tagger) to compute this feature for GENIA.

15. Orthographic features: We define a number of ortho-
graphic features depending upon the contents of the word-
forms. Several binary features are defined which use
capitalization and digit information. These features are: ini-
tial capital, all capital, capital in inner, initial capital then
mix, only digit, digit with special character, initial digit then
alphabetic, digit in inner. The presence of some special char-
acters like (‘,’, ‘-’, ‘.’, ‘)’, ‘(’, etc.) is very much helpful to detect
NEs, especially in biomedical domain. For example, many
biomedical NEs have ‘-’ (hyphen) in their construction. Some
of these special characters are also important to detect
boundaries of NEs. We also use the features that check the
presence of ATGC sequence and stop words. The complete
list of orthographic features is shown in Table 1.

3. Problem formulation for feature selection

In general, feature selection problem is formulated under the
single objective optimization. It is stated as follows: Given a set
of features X and a classification quality measure P, determine
the feature subset F⁄ such that:
aphic features.

re Example Feature Example

ap Src AllCaps EBNA, LMP
p mAb CapMixAlpha NFkappaB, EpoR
Only 1, 123 DigitSpecial 12–3
Alpha 2 � NFkappaB, 2A AlphaDigitAlpha IL23R, EIA
en - CapLowAlpha Src, Ras, Epo

AndDigits 32Dc13 RomanNumeral I, II
Word at, in ATGCSeq CCGCCC, ATAGAT
aDigit p50, p65 DigitCommaDigit 1,28
kLetter alpha, beta LowMixAlpha mRNA, mAb
PðF�Þ ¼max
F2X

PðFÞ

In general the search space for this type of problems is 2d, where
d is the total number of possible features. Thus, exhaustive search
strategies can not be applied in this case. Some heuristics based
techniques like GA [14] can be used to search for the appropriate
feature combination.
3.1. Overview of genetic algorithm

Genetic Algorithms (GAs) [14] are randomized search and opti-
mization techniques guided by the principles of evolution and nat-
ural genetics, having a large amount of implicit parallelism. GAs
perform search in complex, large and multi-modal landscapes,
and provide near-optimal solutions for objective or fitness function
of an optimization problem. In GAs, the parameters of the search
space are encoded in the form of strings called chromosomes. A col-
lection of such strings is called a population. Initially, a random
population is created, which represents different points in the
search space. An objective or a fitness function is associated with
each string that represents the degree of goodness of the string.
Based on the principle of survival of the fittest, a few of the strings
are selected and each is assigned a number of copies that go into
the mating pool. Biologically inspired operators like crossover and
mutation are applied on these strings to yield a new generation
of strings. The process of selection, crossover and mutation contin-
ues for a fixed number of generations or till a termination condi-
tion is satisfied.
4. Method for feature selection

In this section we present our method for automatic feature
selection using evolutionary GA. It optimizes a single classification
quality measure, namely F-measure which is a combination of both
recall and precision. It determines the most relevant set of features
for CRF and SVM with respect to the problem of entity identifica-
tion and classification.
4.1. Chromosome representation and population initialization

If the total number of features is F, then the length of the chro-
mosome is F. As an example, the encoding of a particular chromo-
some is represented in Fig. 1. Here, F = 12 (i.e., total 12 different
features are available). The chromosome represents the use of 7
features, i.e., first, third, fourth, seventh, tenth, eleventh and
twelfth for constructing the particular classifier. The entries of each
chromosome are randomly initialized to either 0 or 1. Here, if the
ith position of a chromosome is 0 then it represents that ith feature
does not participate in constructing the classifier. Else, if it is 1 then
the ith feature participates in constructing the classifier.

If the population size is P then all the P number of chromosomes
of this population are initialized in the above way.
4.2. Fitness computation

We execute the following steps for fitness computation.
Fig. 1. Chromosome representation for GA based feature selection.
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1. Suppose, there are N number of features present in a particular
chromosome (i.e., there are total N number of 1’s in that
chromosome).

2. Construct a CRF/SVM based classifier with only these N features.
3. The training data is divided into 3 parts. The CRF/SVM classifier

is trained using 2/3 parts of the training data with the set of fea-
tures encoded in the corresponding chromosome, and evalu-
ated with the remaining 1/3 part.

4. The overall recall, precision and F-measure values of this CRF/
SVM classifier for the 1/3 training data are calculated.

5. Steps 2–4 are repeated 3 times to perform 3-fold cross valida-
tion. Then, the overall average F-measure value of the CRF/
SVM classifier is determined from this cross validation
experiment.

In case of single objective GA the objective function correspond-
ing to a particular chromosome is: f1 ¼ 1

F-measureavg
. The objective is

to minimize this objective function.

4.3. Other operators

For single objective GA, normal single point crossover [18] is
used. Here, mutation operator is applied to each entry of the chro-
mosome where the entry is randomly replaced by either 0 or 1.
Roulette wheel selection is used to implement the proportional
selection strategy.

4.4. Generation of several CRF and SVM models

In case of GA, it produces several solutions on the final best pop-
ulation. Each of these solutions provides a feature subset for a CRF/
SVM based classifier. Some of these solutions are good with respect
to recall and some are good with respect to precision. All the solu-
tions are equally important from the algorithmic point of view.
Thus we generate several CRF and SVM based classifiers by varying
the feature combinations, represented in the chromosomes of the
final best population. The output of these solutions are then com-
bined using a stacked based ensemble technique.
6 http://crfpp.sourceforge.net.
7 http://chasen-org/taku/software/yamcha/.
8 http://cl.aist-nara.ac.jp/taku-ku/software/TinySVM.
5. A stacked model for classifier ensemble

In this work we develop a stacked ensemble model for combin-
ing the outputs of several classifiers. The first step, i.e. GA based
feature selection (c.f. Section 4) provides necessary inputs to the
second stage, i.e. ensemble construction. As mentioned in the pre-
vious section several base classifiers are generated using the vari-
ous features, represented in the chromosomes of the final
population. All these classifiers are trained with the training data
and evaluated on the test data. In the second step we use a meta
classifier that is based on CRF. The feature vectors corresponding
to the meta-classifier, i.e. of the second level classifier are calcu-
lated as follows.

Suppose the number of available features is F. The base classifi-
ers are trained using a subset of these set of feature values.
Suppose there are M number of base classifiers available; C1, C2, -
. . . , CM. A portion of the training dataset is randomly selected to
be used as the development set. These base classifiers are first eval-
uated on this development data to predict the outputs of all in-
stances. Suppose for an instance i of the development data the
predictions are C1(x), C2(x), . . . , CM(x). These predicted classifica-
tions are used to form a ‘‘meta level training instances’’ termed
as T, which is used as a training set to a meta-learning algorithm.
The feature vector corresponding to a meta classifier is:
T = {original attribute values,C1(x), C2(x), . . . , CM(x)}. This feature
vector is extracted for all the tokens of the development data. This
will form a training data which is used to train the second level
meta classifier. In the test phase, at first base classifiers are used
to predict the class labels of each instance. Then these values are
used as the features for the meta classifier. The skeleton of this
two-stage stacking procedure is shown in Fig. 2. In our work we
use CRF as the meta classifier.
6. Evaluation results and discussions

In this section we report the evaluation scheme, our detailed
experiments and the necessary comparisons with respect to the
current state-of-the-art systems. We use CRF and SVM as the base
classifiers in the first stage of our proposed algorithm. Conditional
Random Filed (CRF) [19] considers a global exponential model that
has the freedom to include arbitrary features and the ability of fea-
ture induction to automatically construct the most useful feature
combinations. Since, CRFs are log-linear models, and high accuracy
may require complex decision boundaries that are non-linear in
the space of original features, the expressive power of the models
is often increased by adding new features that are conjunctions of
the original features. However, it is infeasible to incorporate all
possible conjunctions as these might result in overflow of memory
as well as overfitting. For constructing CRF based classifiers, we use
the C++ based CRF++ package,6 a simple, customizable, and open
source implementation of CRF for segmenting or labeling sequential
data. For CRF training, we use CRF++ 0.54 version and set the follow-
ing parameter values, regularization parameter (a): default setting,
i.e. L2; soft-margin parameter (c): trades the balance between over-
fitting and underfitting (default value); and cut-off threshold for the
features (f): uses the features that occur no less than f times in the
given training data (set to 1, i.e. all the features that appear at least
once in the training dataset are considered). Support Vector Machine
(SVM) technique [20,21] takes a strategy that maximizes the margin
between the critical samples and the separating hyperplane. In par-
ticular, SVMs achieve high generalization even with training data of
a very high dimension. Moreover, with the use of kernel function,
SVMs can handle non-linear feature spaces, and carry out the train-
ing considering combinations of more than one feature. For con-
structing SVM based classifiers, we use YamCha7 toolkit, an SVM
based tool for detecting classes in documents and formulating the
NE extraction task as a sequential labeling problem. Here, we use
both the one-vs-rest and pairwise multi-class decision methods, and
the polynomial kernel function. We use TinySVM-0.078 classifier.

We define two different baseline ensemble models as below:

� Majority vote based ensemble: In this baseline model, all the indi-
vidual classifiers identified by the first stage are combined
together into a final system based on the majority voting of
the output class labels. If all the outputs differ then anyone is
selected randomly.
� Weighted vote based ensemble: This is a weighted voting

approach. In each classifier, weights are calculated based on
the average F-measure value of the 3-fold cross validation on
the training data.

6.1. Evaluation scheme

All the classifiers are evaluated in terms of recall, precision and
F-measure. Precision is the ratio of the number of correctly found
NE chunks (i.e., more than one token) to the number of found NE
chunks, and recall is the ratio of the number of correctly found

http://www.crfpp.sourceforge.net
http://www.chasen-org/taku/software/yamcha/
http://www.cl.aist-nara.ac.jp/taku-ku/software/TinySVM


Fig. 2. A stacked based model.
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NE chunks to the number of true NE chunks. The definitions of pre-
cision and recall are given below:

precision

¼Number of NE chunks correctly identified by the system
Number of NE chunks identified by the system

ð2Þ

recall¼Number of NE chunks correctly identified by the system
Number of NE chunks in the gold standard test data

ð3Þ

From the definitions, it is clear that while recall tries to increase
the number of tagged entries as much as possible, precision tries to
increase the number of correctly tagged entries. These two capture
two different classification qualities.

The value of the metric F-measure, which is the weighted har-
monic mean of recall and precision, is calculated as below:

Fb ¼
ð1þ b2Þðrecallþ precisionÞ

b2 � precisionþ recall
; b ¼ 1

For evaluation with the JNLPBA shared task dataset, we use the
script available at.9 These are the modified versions of the CoNLL-
2003 shared task [22] evaluation script. The script outputs three sets
of F-measure according to the exact, right and left boundary
matches. In the right boundary matching only right boundaries of
entities are considered without matching left boundaries and vice
versa. For evaluation with the GENETAG dataset we use the same
strict matching criterion that was followed in the Biocreative-II
shared task evaluation script10 for the gene mention detection task.

6.2. Experiments on GENTAG datasets

We evaluate our proposed approach on GENETAG dataset,
which is a variant of the benchmark dataset of Biocreative-II gene
mention detection task. GENETAG covers a more general domain of
PubMed. It contains both true and false gene or protein names in a
variety of contexts. In GENETAG, not all the sentences of abstracts
were included, rather more named entity (NE) informative sen-
tences were considered. GENETAG selects longer text fragments
as entity reference, includes the semantic category word ‘protein’
for protein annotation, and is more inclined to select more descrip-
tive expressions for protein annotations. During annotations of
GENETAG dataset, some semantic constraints were chosen to make
sure that tagged entities must contain their true meanings in the
sentence contexts. Based on the gene names from GeneBank,11

the GENETAG corpus includes domains, complexes, subunits, and
promoters when the annotated entities refer to specific genes/
proteins.
9 http://www.nactem.ac.uk/tsujii/GENIA/ERtask/report.html.
10 http://www.biocreative.org/news/biocreative-ii/.
11 http://www.ncbi.nlm.nih.gov/Genbank/. 12 ftp://ftp.ncbi.nlm.nih.gov/pub/tanabe/GENEATG.tar.gz
We evaluate our proposed approach with the GENETAG training
and test datasets, available at.12 Entities related to gene mentions in
both the training and test datasets were annotated with the ‘NEW-
GENE’ tag and the overlapping gene mentions were distinguished
by another tag ‘NEWGENE1’. However, in this work, we use the stan-
dard IOB2 notations (as in GENIA corpus of JNLPBA 2004 shared task,
c.f. Section 6.3) to properly denote the boundaries of gene names,
and we replace all the ‘NEWGENE1’ tags by ‘NEWGENE’ for training
and testing. The training dataset contains 7500 sentences with 8881
gene mentions. The average length per protein (or, gene) mention is
2.1 tokens. The test dataset consists of 2500 sentences with 2986
gene mentions.

In the first stage, GA based feature selection technique pro-
duces a set of solutions in the best population. Each of these solu-
tions represents different feature combinations. Based on the
feature combinations of the best population, we generate several
models based on CRF and SVM. Results of the individual models
are reported in Table 2. Each of these classifiers is trained with
the set of features as described in SubSection 2. The highest
performance corresponds to a SVM based classifier (c.f. SVM4 in
Table 2) that yields the overall recall, precision and F-measure
values of 94.41%, 93.50% and 93.95%, respectively. The base
classifiers are combined using three different ensemble tech-
niques, namely majority vote based ensemble, weighted vote based
ensemble and our proposed stack based ensemble. For stacking we
use CRF as the meta-classifier that makes use of the following set
of features:

Context window size of [�1, +1], prefixes of size 4 of the win-
dow [�2, +2], suffixes of size 4 of the window [�2, +2], word
length, infrequent word, normalization feature, orthographic fea-
ture, PoS information, trigger words, unknown word feature, head
noun feature, word class feature, informative words feature,
semantic feature, and bigram feature.

The proposed stack based ensemble technique (see Table 3)
achieves the overall recall, precision and F-measure values of
95.12%, 94.29% and 94.70%, respectively. It is actually the incre-
ments of 0.75%, 0.65% and 0.41% of F-measure points over the best
individual classifier, Baseline 1 and Baseline 2, respectively.

We compare the performance of our proposed system with
some other biomedical entity extraction systems that made use
of the same datasets, i.e. GENTAG. We compare with the systems
reported in the BioCreative-2 challenges as well as with those that
were developed at the later stages but made use of the same data-
sets. Our system does not use any deep domain knowledge and/or
external resources. Almost all the features were automatically ex-
tracted from the training dataset. In our experiment, we use only
PoS and chunk (or, phrase) information as the domain dependent
knowledge. We present the comparative evaluation results in
Table 4 not only with the domain-independent systems but
also with the systems that incorporate deep domain knowledge

http://www.nactem.ac.uk/tsujii/GENIA/ERtask/report.html
http://www.biocreative.org/news/biocreative-ii/
http://www.ncbi.nlm.nih.gov/Genbank/


Table 2
Evaluation results on GENETAG datasets with various feature subsets. Here, the following abbreviations are used: ‘CW’:Context words, ‘PS’: Size of the prefix, ‘SS’: Size of the
suffix, ‘WL’: Word length, ‘IW’: Infrequent word, ‘NO’: Normalization feature, ‘Chunk’: Chunk information, ‘PoS’: PoS information, ‘OR’: Orthographic feature, ‘Tri’: Trigger word,
‘HN’: Head noun feature, ‘Dyn’: Dynamic feature, ‘UN’: Unknown word feature, ‘WC’: Word class feature, ‘IN’: Informative words feature, FT: Feature template for CRF, B: Bigram
feature template of CRF, ‘Ct’: Content word feature, [�i, j]: context words spanning from the left ith position to the jth right position, All [�i, j]: All feature combinations within the
context except dynamic NE for the left ith positions, X: Denotes the presence of the corresponding feature, ‘r’: recall, ‘p’: precision, ‘F’: F-measure (we report percentages).

Classifiers CW PS SS WL IW NO OR PoS Tri Ct Dyn UN HN WC IN FT r p F

CRF1 [�1, +1] 3 4 X X X X X X X X X B 94.79 92.08 93.42
CRF2 [�1, +1] 1 2 X X X X X X X X X B 94.67 92.36 93.50
CRF3 [�1, +1] 2 4 X X X X X X X B 94.82 92.17 93.47
CRF4 [�1, +1] 2 2 X X X X X X X X X X B 94.73 92.25 93.48
CRF5 [�2, +2] 2 3 X X X X X X X X X X B 93.74 92.16 93.43
CRF6 [�3, +3] 2 2 X X X X X X X X X X B 94.70 92.30 93.48
CRF7 [�4, +4] 1 2 X X X X X X X X X X B 94.78 92.08 93.42
CRF8 [�1, +1] 1 3 X X X X X X X B 94.80 92.21 93.49
CRF9 [�1, +1] 1 2 X X X X X X X B 94.80 92.21 93.49
SVM1 [�1, +1] 4 4 X X X X X X �1 X X X X 93.60 91.51 92.54
SVM2 [�2, +2] 4 4 X X X X X X �2 X X X X 94.27 93.21 93.74
SVM3 [�2, +2] 4 4 X X X X [�2, +2] X �2 X X X X 94.20 93.36 93.65
SVM4 [�2, +2] 4 4 X X X X [�2, 0] X �2 X X X X 94.41 93.50 93.95
SVM5 [�2, +2] 3 3 X X X X X X �2 X X X X 94.14 93.14 93.64
SVM6 [�2, +2] 3 3 X X X X [�2, +2] X �2 X X X X 94.07 93.32 93.69
SVM7 [�2, +2] 3 3 X X X X [�2, 0] X �2 X X X X 94.10 93.29 93.69
SVM8 [�3, +3] 4 4 X X X X X X �3 X X X X 94.17 93.14 93.65

Table 3
Overall evaluation results on GENETAG datasets (training: GENETAG, test: GENETAG).

Classification Scheme recall precision F-measure

Best individual classifier 94.41 93.50 93.95
Majority Vote Based Ensemble 94.45 93.65 94.05
Weighted Vote Based Ensemble 94.67 93.91 94.29
Stacked based ensemble 95.12 94.29 94.70

Table 4
Comparison with the existing approaches for GENETAG data set

System Approach used Domain knowledge/
resources

F-
measure

Our proposed
system

Stacked ensemble
(CRF and SVM)

PoS, phrase 94.70

Song et al. [6] SVM – 66.7
Bickel et al. [7] SVM a dictionary 72.1
Kinoshita et al.

[23]
TnT [24], the
Trigrams ‘n’ Tags

dictionary based
postprocessing

80.9

HMM-based part-of-
speech tagger

Mitsumoriet al.
[8]

SVM gene/protein name
dictionary

78.09

Finkel et al. [9] ME + post processing 82.2
McDonald and

Pereira [10]
CRF 82.4

GuoDong et al.
[11]

HMM, SVM,
Ensemble technique

Post processing 82.58

13 http://research.nii.ac.jp/�collier/workshops/JNLPBA04st.htm.
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and/or external resources. We systematically analyze the contribu-
tion of each feature, and it reveals the fact that huge performance
gain is achieved with the PoS information which was provided
with the dataset. After observing this remarkable performance gain
we analyzed each step of our implementation thoroughly. It seems
that one possible explanation behind this radical improvement
could be as follows. It is to be noted that in the GENETAG training
and test datasets, PoS information were provided only for the non-
gene proteins. We preprocessed this data and assigned the PoS
class, NNP, i.e. proper noun to each of these gene tokens. This
PoS information actually plays a crucial role in the overall system
performance.
6.3. Experiments on GENIA datasets

In order to show the generalization of the developed two-stage
algorithm we apply the proposed technique on the JNLPBA 2004
shared task datasets.13 The data sets were extracted from the GEN-
IA Version 3.02 corpus of the GENIA project. This was constructed
by a controlled search on Medline using MeSH terms such as hu-
man, blood cells and transcription factors. From this search, 2000 ab-
stracts of about 500 K wordforms were selected and manually
annotated according to a small taxonomy of 48 classes based on
a chemical classification. Out of these classes, 36 classes were used
to annotate the GENIA corpus. In the shared task, the data sets
were further simplified to be annotated with only five NE classes,
namely Protein, DNA, RNA, Cell_line and Cell_type [16]. The test set
was relatively new collection of Medline abstracts from the GENIA
project. The test set contains 404 abstracts of around 100 K words.
One half of the test data was from the same domain as that of the
training data and the rest half was from the super domain of blood
cells and transcription factors. For simplification, embedded struc-
tures were removed leaving only the outermost structures (i.e.
the longest tag sequence). Consequently, a group of coordinated
entities involving ellipsis were annotated as one structure like in
the following example:

. . . in [lymphocytes] and [T � and B � lymphocyte] count in . . .

In the example, ‘T- and B-lymphocyte’ was annotated as one
structure but involves two entity names, ‘T-lymphocyte’ and ‘B-
lymphocyte’, whereas ‘lymphocytes’ was annotated as one. In or-
der to properly denote the boundaries of NEs, five classes are fur-
ther divided using the IOB2 format, where ‘B-XXX’ refers to the
beginning of a multi-word/single-word NE of type ‘XXX’, ‘I-XXX’
refers to the intermediate parts of the NE and ‘O’ refers to the enti-
ties outside the NE.

Similar to the GENETAG domain, we build a number of different
CRF and SVM based classifiers by varying the various available fea-
tures selected after application of the GA based feature selection
technique. The feature selection technique is applied on the follow-
ing set of features:

(1). various contexts within the previous and next three words,
i.e. wiþ3

i�3 ¼ wi�3 . . . wiþ3, (2). word suffixes and prefixes of length up
to three (3 + 3 different features) or four (4 + 4 different features)

http://www.research.nii.ac.jp/collier/workshops/JNLPBA04st.htm
http://www.research.nii.ac.jp/collier/workshops/JNLPBA04st.htm


Table 5
Evaluation results on JNLPBA dataset (GENIA) with various feature subsets. Here, the following abbreviations are used: ’CW’:Context words, ‘PS’: Size of the prefix, ‘SS’: Size of the
suffix, ‘WL’: Word length, ‘IW’: Infrequent word, ‘NO’: Normalization feature, ‘Chunk’: Chunk information, ‘PoS’: PoS information, ‘OR’: Orthographic feature, ‘Tri’: Trigger word,
‘HN’: Head noun feature, ‘Ct’: Content words, ‘Dyn’: Dynamic feature, ‘UN’: Unknown word feature, ‘WC’: Word class feature, ‘IN’: Informative words, FT: Feature template for CRF,
B: Bigram feature template of CRF, [�i, j]: context words spanning from the left ith position to the jth right position, All [�i, j]: All feature combinations within the context except
dynamic NE for the left ith positions, X: Denotes the presence of the corresponding feature, ‘r’: recall, ‘p’: precision, ‘F’: F-measure (we report percentages).

Classifiers CW PS SS WL IW NO Chunk OR PoS Tri Ct Dyn UN HN WC IN FT r p F

CRF1 [�2, +2] 4 4 X X X X X X X X X B 72.0 75.91 74.10
CRF2 [�3, +3] 3 3 X X X X X X B 71.82 76.10 73.90
CRF3 [�3, +2] 4 4 X X X X X X X X X B 72.21 75.93 74.0
CRF4 [�1, +1] 4 4 X X X X X X X X B 72.21 76.10 74.11
CRF5 [�2, +2] 4 4 X X X X X X X X X B 72.37 76.34 74.30
CRF6 [�3, +3] 4 4 X X X X X X X X X X X B 73.10 76.78 74.90
CRF7 [�3, +3] 4 4 X X X X X X X X B 72.14 75.73 73.89
CRF8 [�3, +2] 4 4 X X X X X X X X X B 72.47 76.69 74.52
CRF9 [�1, +1] 4 4 X X X X X X X X B 72.25 76.14 74.15
SVM1 [�3, +3] 4 4 X X X X X X X X �2 X X X X 67.70 66.34 67.01
SVM2 [�3, +3] 4 4 X X X [�2, +2] X X X X �2 X X X X 72.43 66.65 69.42
SVM3 [�3, +3] 4 4 X X X [�2, +2] X [�2, +2] X X �2 X X X X 72.82 67.08 69.83
SVM4 [�3, +3] 4 4 X X X [�1, +1] X [�1, +1] X X �2 X X X X 72.86 66.96 69.78
SVM5 [�3, +3] 4 4 X X X X X [�2, +2] X X �2 X X X X 73.05 67.04 69.92
SVM6 [�3, +3] 4 4 X X X X X X X X �3 X X X X 72.47 66.71 69.47
SVM7 [�3, +3] 4 4 X X X X X X X X �3, X X X X 74.77 68.71 71.61

All [�1, +1]
SVM8 [�3, +3] 4 4 X X X [�1, +1] X [�1, +1] X X �3 X X X X 72.45 66.60 69.40
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characters of words within the context window wiþ2
i�2 ¼ wi�2 . . . wiþ2,

(3). PoS information of the current and/or the surrounding to-
ken(s), (4). Chunk information of the current and/or the surround-
ing token(s), (5). Dynamic NE tag(s) of the previous token(s), (6).
Word normalization, (7). Word length, (8). Infrequent word, (9).
Unknown tokens, (10). Head nouns (unigram and bigram), (11).
Verb trigger, (12). Word class, (13). Informative NE information,
(14). Content words, and (15). Orthographic features.

We construct several different versions of CRF and SVM based
classifiers by utilizing various features and/or feature templates
of the final best population. Here, in Table 5, we show only the re-
sults of good-performing 9 and 8 CRF and SVM based classifiers,
respectively. Feature combinations are mainly varied with local
contexts, prefixes and suffixes. For example the results in Table 5
show that the first classifier has all the features with context in
the window of [�2, +2] (i.e. previous two and next two words),
and suffixes and prefixes of length up to four characters. The sec-
ond classifier is constructed with all features but with context win-
dow of [�3, +3], and prefixes and suffixes of length up to three
characters. We use all the features for training and use the default
settings for all other parameters of CRF. For SVM, we use the poly-
nomial kernel function of degree two. The CRF-based model exhibits
the best performance with the recall, precision and F-measure val-
ues of 73.10%, 76.78% and 74.90%, respectively. The corresponding
feature template (6th row) considers the contexts of previous and
next three tokens along with their all possible n-gram (n 6 3)
Table 6
Evaluation results on JNLPBA dataset (GENIA) with various feature subsets; different featu

Classifiers CW PS SS WL IW NO Chunk OR PoS

CRF1 [�3, +3] X
CRF2 [�3, +3] X X
CRF3 [�3, +3] X X X
CRF4 [�3, +3] 4 X X X
CRF5 [�3, +3] 4 4 X X X
CRF6 [�3, +3] 4 4 X X X X
CRF7 [�3, +3] 4 4 X X X X
CRF8 [�3, +3] 4 4 X X X X
CRF9 [�3, +3] 4 4 X X X X
CRF10 [�3, +3] 4 4 X X X X
CRF11 [�3, +3] 4 4 X X X X X X
CRF12 [�3, +3] 4 4 X X X X X X
combinations from left to right, prefixes and suffixes of length up
to four characters of only the current word, feature vector consist-
ing of length, infrequent word, normalization, chunk, orthographic
constructs, trigger word, unknown word, head noun, word class,
informative NE information of only the current token, and bigram
feature combinations. For SVM, all the feature combinations within
the context of previous one and next one words are very effective
to improve the overall system performance (i.e. SVM7).

In Table 6, we analyze the effects of each feature inclusion on
the overall system performance. We present the analysis only for
CRF as this yields the best individual performance. Results show
that the system achieves the F-measure value of 69.05% with the
local contexts of preceding three and following three words along
with the orthographic features. The prefixes and suffixes of length
up to four characters improve the overall F-measure value by 2.90
points. The PoS and chunk information show the increments of less
than one point. Results clearly show the effectiveness of ‘‘informa-
tive NE words’’ and ‘‘head noun’’ features. The content word
feature (or, semantic feature) that exploits global context informa-
tion does not contribute to the improvement to overall system per-
formance. Please note that for this setting we used the PoS class
NNP (denoting proper nouns) to extract content word feature from
the test data.

We also show the detailed evaluation results (recall, precision
and F-measure values of individual output classes) in Table 8 for
the best individual classifier.
res are added to the best performing classifier one by one.

Tri Se Dyn UN HN WC IN FT r p F

B 67.88 70.26 69.05
B 69.16 70.02 69.59
B 69.38 70.04 69.71
B 71.26 70.74 71.00
B 72.43 71.48 71.95

X B 72.62 71.54 72.08
X X B 72.37 71.43 71.89

X X X B 72.51 71.75 72.13
X X X X B 72.22 72.13 71.68
X X X X X B 76.63 72.93 74.73
X X X X X B 76.78 73.10 74.90
X X X X X X B 76.63 73.04 74.79



Table 7
Overall evaluation results on GENIA data set (we report percentages).

Model recall precision F-measure

Best individual classifier 73.10 76.78 74.90
Baseline 1 71.03 75.76 73.32
Baseline 2 71.42 75.90 73.59
Stacked based ensemble 75.15 75.20 75.17

Table 8
Evaluation results of the best individual classifier on GENIA data set for individual NE
classes.

Class Recall Precision F-measure

Overall
FULLY correct 76.78 73.10 74.90
Correct LEFT boundary 80.56 76.69 78.58
Correct RIGHT boundary 83.98 79.95 81.92

Protein
FULLY correct 82.31 73.22 77.50
Correct LEFT boundary 86.89 77.30 81.81
Correct RIGHT boundary 88.70 78.91 83.51

Cell_line
FULLY correct 59.29 56.62 57.93
Correct LEFT boundary 64.31 61.41 62.82
Correct RIGHT boundary 71.68 68.45 70.03

DNA
FULLY correct 74.03 72.61 73.31
Correct LEFT boundary 76.46 75.00 75.72
Correct RIGHT boundary 81.17 79.62 80.39

RNA
FULLY correct 71.83 72.86 72.34
Correct LEFT boundary 74.65 75.71 75.18
Correct RIGHT boundary 80.28 81.43 80.85

Cell_type
FULLY correct 69.21 78.95 73.76
Correct LEFT boundary 71.25 81.28 75.93
Correct RIGHT boundary 76.93 87.75 81.99
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� FULLY correct: the boundaries predicted by our proposed sys-
tem and those of the gold standard data match on both sides.
� Correct LEFT boundary: the boundaries predicted by the system

and that of the gold standard data are same on the left side.
� Correct RIGHT boundary: the boundaries determined by our

proposed system and that of the gold standard match on the
right side.

All the individual models of CRF and SVM are thereafter com-
bined with the proposed stacked based ensemble. Here a CRF based
classifier is used as the meta classifier in the second stage. It uses
the following feature template: Context window size of [�1, +1],
prefixes of size 4 of the window [�2, +2], suffixes of size 4 of the
window [�2, +2], word length, infrequent word, normalization
Table 9
Comparison with the existing approaches for GENIA data set.

System Used approach Domain knowledge/res

Our proposed system Classifier ensemble (CRF and SVM) POS, phrase
Zhou and Su [25] Final HMM, SVM Name alias, cascaded N
Zhou and Su [25] HMM, SVM POS, phrase
Kim et al. [26] Two-phase model with ME and

CRF
POS, phrase, rule-based

Finkel et al. [27] ME Gazetteers, web-query
Settles [28] CRF POS, semantic knowled
Saha et al. [17] ME POS, phrase
Park et al. [29] ME POS, phrase, domain-s

Medline
Song et al. [30] Final SVM, CRF POS, phrase, Virtual sa
Song et al. [30] Base SVM POS,phrase
Ponomareva et al. [31] HMM POS
feature, orthographic feature, PoS information, trigger words, un-
known word feature, head noun feature, word class feature, infor-
mative words feature, and bigram feature. The overall evaluation
results obtained by the stacked ensemble technique are presented
in Table 7. The proposed ensemble technique shows the recall, pre-
cision and F-measure values of 75.15%, 75.20% and 75.17%, respec-
tively. This is superior to the best individual model, majority vote
based ensemble and weighted vote based ensemble by 0.27%, 1.85%
and 1.58% F-measure points, respectively. It is interesting to note
that all the baseline models perform lower compared to the best
individual model. This may be due to the fact that instead of mak-
ing prioritization among the classes in each classifier, baseline tech-
niques blindly combine all the available classifiers. This type of
behavior also indicates that the performance of an ensemble sys-
tem greatly depends on the selection of appropriate votes per out-
put class in each classifier.

We compare the performance of our proposed system with
other biomedical entity extraction systems that made use of the
same GENIA dataset. We compare with the systems, developed
with same datasets. Our system does not make use of any deep do-
main knowledge and/or external resources. In our experiment, we
use only PoS and chunk (or, phrase) information as the domain
dependent knowledge. So, it will not be fair to compare the perfor-
mance of our stack based ensemble with all the available systems.
However, we present the comparative evaluation results in Table 9
not only with the domain-independent systems but also with the
systems that incorporate deep domain knowledge and/or external
resources.

Zhou and Su [25] developed the best system in the JNLPBA 2004
shared task. This system provides the highest F-measure value of
72.55 with several deep domain knowledge sources. But when
the system used only PoS and chunk information as the domain
knowledge, the F-measure value drops to 64.1%. Song et al. [30]
used CRF and SVM both, and obtained the F-measure of 66.28%
with virtual samples. The HMM-based system reported by Pono-
mareva et al. [31] achieved a F-measure value of 65.7% with PoS
and phrase-level domain dependent knowledge. A ME-based sys-
tem was reported in [29] where recognition of terms and their
classification were performed in two steps. They achieved a F-mea-
sure value of 66.91% with several lexical knowledge sources such
as salient words obtained through corpus comparison between do-
main-specific and WSJ corpora, morphological patterns and collo-
cations extracted from the Medline corpus. As far our knowledge
is concerned, one of the very recent works proposed in [17] ob-
tained the F-measure value of 67.41% with PoS and phrase infor-
mation as the only domain knowledge. This is the highest
performance achieved by any system that did not use any deep do-
main knowledge.

A CRF-based NE extraction system has been reported in [28]
that obtained the F-measure value of 70% with orthographic
ources FM
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Es dictionary, POS, phrase 72.55
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features, semantic knowledge in the form of 17 lexicons gener-
ated from the public databases and Google sets. Finkel et al.
[27] reported a CRF-based system that showed the F-measure
value of 70.06% with the use of a number of external resources,
including gazetteers, web-querying, surrounding abstracts,
abbreviation handling method, and frequency counts from the
BNC corpus. A two-phase model based on ME and CRF was pro-
posed by Kim et al. [26] that achieved a F-measure value of
71.19% by postprocessing the outputs of machine learning mod-
els with a rule-based component. We also compare the perfor-
mance of our proposed ensemble based approach with
BANNER [32] that was implemented using CRFs. BANNER ex-
ploits a range of orthographic, morphological and shallow syntax
features, such as part-of-speech tags, capitalisation, letter/digit
combinations, prefixes, suffixes and Greek letters. Comparisons
between the several existing NE extraction systems are provided
in [33]. For BANNER, Kabiljo et al. [33] reported the F-measure
values of 77.50% and 61.00% under the sloppy matching and
strict matching criterion, respectively with the JNLPBA shared
task datasets.

In summary, our proposed two-stage approach attains the
state-of-the-art performance levels for entity extraction in two dif-
ferent kinds of biomedical datasets. The possible reasons behind
the better performance in our proposed approach are the (i). use
of variety and rich features as described in Section 2; (ii) use of
GA based feature selection technique to identify appropriate subset
of features of any classifier, particularly for the problem of biomed-
ical entity extraction; and (iii). use of stack based ensemble ap-
proach that effectively combines the classifiers and further
improves the overall performance.
7. Conclusion and future works

In this paper we have proposed a two-stage approach for bio-
medical entity extraction, where the gene or gene-product names
are identified and then classified into some predefined categories
of interest. At the first stage, a GA based feature selection tech-
nique is implemented to determine the best set of features for
CRF and SVM based classifiers. We came up with a very rich fea-
ture set that itself can achieve very high accuracy. The most
important characteristic of our system is that all the features
are mostly identified and developed without using any deep
domain knowledge and/or external resources. The GA based ap-
proach identifies a set of best solutions on the final population.
The chromosomes in this population represent different feature
combinations for CRF and SVM. Several different CRF and SVM
based classifiers are generated varying these set of features. These
classifiers are then combined using a stacked ensemble technique.
As a meta-classifier we have used CRF as the classifier in the
second stage of our algorithm. Evaluation results for GENETAG
and GENIA benchmark datasets have shown the overall F-measure
values of 94.70% and 75.17%, respectively. Detailed comparisons
show that our proposed technique achieves state-of-the-art
performance.

In future we would like to add some more features based on
external resources like gene/protein dictionary. Use of multiobjec-
tive optimization (MOO) for feature selection in biomedical entity
extraction will be an interesting experiment to be carried out. Here
for GA based feature selection technique we have optimized only a
single classification quality measure, i.e. F-measure. But in entity
extraction there are some other classification quality measures like
recall and precision. More than one such classification quality mea-
sures can be efficiently optimized using the search capability of
MOO.
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