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Abstract Entity extraction is an important step in biomed-
ical text mining. Among many other challenges, there are
two very crucial issues, viz. determining the most applicable
feature set so that the model can be precise and less com-
plex, and adapting the system across multiple benchmark
corpora. In this paper, we propose a novel method for fea-
ture selection using the search capability of particle swarm
optimization. The compact feature set used for training the
classifier yields much better results when compared to the
baseline model, which was developed with a complete set of
features. A large number of features suitable for named entity
recognition task from biomedical domain are also developed
in the current paper. The complete set of features is imple-
mented by studying the properties of datasets and from the
domain knowledge. We have used conditional random field,
arobust classifier as the underlying learning algorithm which
has shown success in solving similar kinds of problems. Our
experiments on multiple benchmark corpora yield the level of
performance which are at par the state-of-the-art techniques.
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1 Introduction

The abundance of biomedical information available in the
web has necessitated developing robust models for extract-
ing relevant information from these unstructured sources of
biomedical data. Manual curation of relevant information
incurs huge complexities in terms of time and manpower.
In the previous 20 years, biomedical literature has increased
rapidly. PubMed known to be one of the huge biomedical
database consists of more than 25 million citations from var-
ious sources like biomedical literature (MEDLINE), life sci-
ence journals. An increment of around 4.2% can be observed
in the size of MEDLINE every year. Therefore, developing
automated techniques for finding the most relevant infor-
mation or discovering new patterns from huge amount of
unstructured data is highly desirable. Entity extraction is such
a task, which is a very crucial step in biomedical information
extraction. It focuses on classifying the identified biomedical
entities from text into the predefined categories of interest.
Biomedical entities mostly refer to gene or gene-like prod-
ucts, such as Protein, DNA, RNA, cell_line, cell_type (Kim
et al. 2004). Literature shows the evidence of a significant
number of approaches for entity extraction, but still the best
proposed technique in the biomedical domain lacks behind by
almost 8—10 points as compared to the traditional newswire
domain. Some of the challenges that we encounter for solving
the problem are as follows:

— Existence of multiple benchmark corpora which, often,
makes it difficult to adapt a system developed for a
domain to the other.

— Continuous expansion of new named entities (NEs),
while still there does not exist any proper dictionary for
several types of biomedical NE.
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— Similar words convey different meanings, and therefore,
a word can have multiple NE types.

— There is no standard nomenclature for biomedical NEs,
and so this arbitrariness makes it difficult to come up
with a very well-defined set of rules that captures the
properties of names very well.

— Biomedical names are of long length and possess dif-
ferent types of symbols, and so its boundary detection
becomes problematic.

— NEs are often embedded with each other. Identifying
these types of NEs requires more effort.

All these problems have contributed heavily to the drop
of accuracies in entity extraction problem from biomedical
datasets. In biomedical domain, many benchmark corpora
exist which are developed using various annotation scheme.
Therefore the system, developed by targeting a domain, often
fails to show reasonable accuracy when it is evaluated in other
domain. Thus, it is highly desirable to develop a generic sys-
tem that can be easily adapted to several domains.

This paper focuses on reducing dimensionality of the
biomedical data set that can lead to overcome some major
problems that we face in retrieving the named entities. Fea-
ture selection (a.k.a. attribute selection) (Yu and Liu 2004)
is an useful preprocessing step that aids in achieving good
accuracy in many applications related to machine learning,
data mining, pattern recognition etc. It is the way in which
the subset of appropriate features is selected for model con-
struction. On the basis of some evaluation criterion, feature
selection is performed to reduce the feature space. The basic
assumption of using feature selection technique is that, data
contain some redundant or insignificant features. Perfor-
mance of classifier is fully dependent on the features that
we use for training. The main purpose of feature selec-
tion is to simplify the dataset and find the feature subset
that results in high classification accuracy. The two most
popular paradigms of feature selection are ‘filter’ and ‘wrap-
per’ model (Das 2001). Feature selection using filter model
is independent of the learning algorithm that is used. Fea-
tures are chosen prior to the development of model just by
analyzing some properties of those features. On the other
hand, wrapper model selects the features on the basis of
some learning algorithm. Evaluation of the attributes is done
on the basis of accuracy estimation that takes into view of
the actual training algorithm. Literature shows that wrap-
per model is effective than filter-based model as the list of
features is selected according to the predetermined learning
algorithm which results in higher accuracy. However, wrap-
per model is computationally expensive compared to the filter
model.

In this paper, we propose a novel method for feature
selection based on wrapper model that determines the most
optimized feature set for a classifier. The feature set, thus
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RFLAT-1: a new zinc finger transcription factor that
activates RANTES gene expression in T lymphocytes.
RANTES (Regulated upon Activation, Normal T cell
Expressed and Secreted) is a chemoattractant cytokine
(chemokine) important in the generation of inflammatory
infiltrate and human immunodeficiency virus entry into
immune cells. RANTES is expressed late (3-5 days) after
activation in T lymphocytes.

Fig. 1 Sample biomedical sentence from JNLPBA corpus

obtained, when used to train the classifier, improves per-
formance. The method we propose is based on the search
capability of particle swarm optimization (PSO) (Kennedy
and Eberhart 1997), which is a popular evolutionary algo-
rithms inspired by the behavior of birds. This paper presents
the application of PSO-based feature selection for solving
the problem of entity extraction from biomedical data.

We extract the features by studying the properties of the
biomedical datasets, and this process is completely auto-
matic. The features that we use are generic in nature and thus
useful for more than one biomedical datasets. The biomed-
ical datasets that we use are not of similar kinds and were
created following different annotation guidelines. Therefore,
the system which is developed by tuning heavily on a spe-
cific domain often fails to perform reasonably whenever the
domain is altered. One of our primary goals was to develop
a system that could perform with acceptable performance
level on multiple benchmark datasets, even if they are gen-
erated following different guidelines. We use the same set of
features for all the datasets. We expect that PSO will deter-
mine the most relevant set of features depending upon the
type of data. Thus automatic selection of feature subset for
each domain is a very important step to reduce the algo-
rithmic complexity of entity extraction. There has not been
systematic attempt of feature selection for entity extraction
using PSO. As such the study of effects of PSO for feature
selection in this domain is really interesting and a new contri-
bution. Figure 1 shows the snippet of the biomedical dataset
taken from the benchmark JNLPBA shared task which is the
natural language text extracted from the biomedical articles.
Tables 1 illustrates some of the features that are extracted
from this dataset. It shows that mostly the features are of
non-numeric types.

Use of PSO-based feature selection, extensive experimen-
tal results and analysis are the key parts of the current paper.
To prove that our system is more generalized and not biased
toward any specific biomedical dataset, we perform exper-
iments on multiple biomedical corpora, namely GENIA,
AlMed, GENETAG and BioCreative-II (BC-II) gene men-
tion challenge datasets. We use binary version of PSO, where
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the presence and absence of features are denoted by 1 and 0,
respectively. Conditional random field (Lafferty et al. 2001),
a robust statistical classifier that showed success in many
sequence labeling tasks, is used as an underlying learning
algorithm.

Specifically, the key contributions of the current paper can
be summarized as follows:

— Biomedical text is the natural language text (an exam-
ple is shown in Fig. 1). As the biomedical datasets are
text based, so the way of generating the features is quite
different from the other domains.

— A sophisticated set of features which can aid in proper
recognition of biomedical names is utilized in the current
paper. These features are generic in nature and applied
on multiple domains.

— Inthe previous studies, PSO-based feature selection tech-
nique was applied on the datasets whose sizes were very
limited. In contrast, there has not been any study that
focuses on PSO-based feature selection in the biomedi-
cal domain. Thus the way the features are generated for
the biomedical domain and PSO is applied for feature
selection are entirely different from the existing works.
In addition, the datasets that we use are varying in nature
and have good sizes. We use the same set of features for
all the domains. Our algorithm is generic in nature and
has been evaluated on multiple benchmark datasets.

— Genetic algorithm (GA)-based feature selection has been
applied for entity extraction in biomedical domains, for
example, Ekbal and Saha (2013). PSO is computation-
ally less expensive compared to GA. It has been shown
in the literature that PSO is less time complex and con-
verges faster compared to GA (Eberhart and Shi 1998).
Motivated by these facts, we use PSO for feature selec-
tion in the related domains. Additionally in comparison
with GA, PSO makes use of less parameters.

— Detailed analysis on the experiments carried out on four
benchmark datasets is presented. Computational com-
plexity of the algorithm is also presented.

— We compare the PSO-based feature selection technique
with filter-based feature selection technique that utilizes
the concept of correlation.

— We performed comprehensive comparison with the pop-
ular wrapper-based technique based on deterministic and
randomized wrapper model.

— An extensive comparative study with the existing
approaches are presented.

The remainder of the paper is organized as follows. Sec-
tion 3 gives a brief introduction to the standard PSO and
binary PSO algorithms. Section 4 provides the description
of our proposed feature selection technique. We present a
brief description of conditional random field that we use as
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a base learner in all our experimental settings. We describe
the features in Sect. 5. Details of experiments and their anal-
ysis are presented in Sects. 6 and 7, respectively. Finally, we
conclude in Sect. 8.

2 Literature review

In the recent past, PSO has gained a lot of attention due to
its property to discover optimal sets of solution rapidly. Over
the years, several variants of PSO have evolved ranging from
the basic PSO which is synchronous in nature. In basic PSO,
synchronization is because of the communication between
the particles. Each particle shares its best position with its
neighbors. Thus each particle is having information about
its neighbors before updating its position. The other variant
of PSO is asynchronous in nature where a particle shares
its memory after moving to the new position. Thus, each
particle can immediately share information without getting
waited for the next iteration.

The traditional PSO takes into account only the continu-
ous valued spaces. Thus it would be difficult to handle finite
variables using PSO. The other variant of PSO, binary PSO,
takes into account this drawback. In case of binary PSO,
each particle’s position is encoded using a binary value, i.e.,
0 or 1. Other versions of PSO include discrete binary PSO
(Kennedy and Eberhart 1997) which takes into account the
discrete binary variables.

Fitness-distance-ratio-based PSO (FDR-PSO)
(Peram et al. 2003) is another type of PSO where every
particle irrespective of the memory also considers the fitness-
distance ratio as an information to select particle with higher
fitness value. The introduction of population manager in one
of the versions of PSO known as efficient population utiliza-
tion strategy for PSO (EPUS-PSO) (Hsieh et al. 2009) helps
in improving the performance of PSO. This way elimination
of the redundant particle is performed. Another PSO vari-
ant known as aging leader and challenge PSO (ALC-PSO)
(Chen et al. 2013) enhances the PSO by removing the prob-
lem of premature convergence. Here, the maximum lifetime
is assigned to the swarm on the basis of its performance.

Other more popular versions of PSO include hybrid ver-
sion of PSO exploring the benefits of neural network such as
(Zhang et al. 2007) using the back-propagation for training
feed forward neural network. Some other approaches include
the amalgamation of the genetic approach and the PSO for
recurrent network design (Juang 2004). Kao and Zahara
(2008) have also developed hybrid GA-PSO that includes
the benefits of GA and PSO to populate new individuals for
next iteration with not just by the GA basic operations like
crossover and mutation but also after considering the mem-
ory concept of PSO.
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Feature selection using PSO has been attempted in the several
domains, particularly more in domain like pattern recogni-
tion (Krisshna et al. 2014; Ramadan and Abdel-Kader 2009),
bioinformatics (Ding and Peng 2005; Chuang et al. 2008). In
some of the text processing applications, PSO-based feature
selection has been applied, for example in Lin et al. (2008)
and Tran et al. (2014).

In recent years, PSO has been applied to solve different
real-life problems. In Cagnina et al. (2008), a clustering tech-
nique is proposed using the search capability of PSO named
CLUDI-PSO. This is having robust performance compared to
other existing clustering techniques as shown (Cagnina et al.
2008). Apart from this Samadzadegan and Saeedi (2009);
Merwe and Van der Engelbrecht (2003) have also exploited
the benefits of using PSO in algorithm. For, the classifica-
tion problem, recently Gupta et al. (2015), Liu et al. (2016)
and Shang et al. (2016) have used the PSO-based feature
selection to identify the best set of features which could
help in identifying the sentiment. Lu et al. (2015) have also
studied the benefits of PSO for text feature selection. Chin-
naswamy et al. (2016) also explored the PSO-based feature
selection for the gene-expression data. They adapted the
hybrid approach to select the feature making use of the cor-
relation coefficient in addition to the PSO. Hybrid approach
to PSO was defined by Xi et al. (2010) where they pro-
posed a binary quantum-behaved PSO (BQPSO) for selecting
cancer feature. This approach was the enhanced version of
the discretized version of original QPSO for binary 0-1
optimization problems. Ghamisi and Benediktsson (2015)
proposed a hybrid approach-based on genetic algorithm and
PSO to select features. In the domain of text categorization,
Aghdam and Heidari (2015) have used PSO to select rele-
vant features. Other PSO-based feature selection approaches
include the works of Kumar et al. (2016) and Sheikhpour
et al. (2016).

However, these algorithms mainly deal with the datasets
whose features are limited and have numeric types. More-
over, the datasets were small in size. In order to show the
proper utility of any feature selection technique, it is required
to evaluate on a dataset having significantly good number of
instances. In the current study, we demonstrate the utility
of PSO-based feature selection on a text dataset containing
approximately 4,92,506 biomedical instances with 57 fea-
tures. The biomedical dataset is very unstructured in nature
that contains many nested long entities, abbreviations, sym-
bols, punctuations etc., and hence the features generated for
this domain are different from those corresponding to other
datasets. Features that we generated for solving the problems
have mostly non-numeric values, which further complicates
the process of feature extraction and processing. It is to be
noted that unlike other domains, feature values are not explic-
itly mentioned for the biomedical textual datasets that we
used.

3 Brief introduction to particle swarm optimization

Particle swarm optimization (PSO) is a meta-heuristic intel-
ligent technique inspired by social behavior of the swarm
for its survival (Eberhart and Shi 1998; Kennedy and Eber-
hart 1997). This is a population-based technique which is
perceived in birds and fishes for the search of the best path.
Here, as the name suggests, PSO, the optimization process is
done on the swarm of the particles. PSO consists of the swarm
of the particles where each particle has its particular position
in the search space which moves around the search space by
some velocity. The particle selects the best path on each iter-
ation by using its memory and by learning the effective path
that was followed previously by the swarm. The new position
is chosen on the basis of the knowledge gained previously
by its self best position and the best position of the swarm.
PSO, being a meta-heuristic model, makes few or no assump-
tions about the problem being optimized and can search very
large spaces of candidate solutions. This makes PSO highly
efficient for the optimization purpose (Yan et al. 2013). The
algorithm iterates by keeping track of two variables:

Global best solution that represents the most promising
vector found so far and personal best solution which denotes
the particle’s own personal best solution.

In PSO, a possible set of solutions to the problem is defined in
the search space of n-dimensions using the vector of particles
as 7’)(1’) = (P@,1)» PG,2)s - - - » P(i,n))- Each particle moves in
the search space through some rate of change, i.e., velocity,
vk Wherek = 1,2, ..., n. ‘pBest’ represents the best posi-
tion found so far, f (?3) (i)) denotes the best fitness function
value of the particle and ‘gBest’ is the global best position
that indicates best solution in whole swarm, f(G(i)) repre-
sents the fitness value of the swarm (Liu et al. 2011). rand
specifies any random number generated. Given a candidate
solution f (7’) (i)), called the fitness function, represents a
merit value that gives overview of our solution reaching to
the goal. Each particle maintain a memory to keep track of:

— A velocity value which directs the movement of particles
in the search space.

— A personal best f (? (7)) value indicating the best solu-
tion of itself.

— A globalbest (G (i)) solution representing the best solu-
tion of the entire swarm.
Every generation shows assessment of each particle, with
further stochastic modification of v(; k) in the movement
of particle 7’)(1' )’s earlier best position and also on the
basis of past best position of other neighboring particle.
With every iteration, we evaluate each particle and then
adjust v(i, k) in the direction of particle 73) (i)’s preced-
ing best position and also neighboring particle existing
best position (Correa et al. 2006).

@ Springer
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PSO based Feature Selection

Feature Generation

Select the features
present in the
particle having best
f-score(gbest)

[

Fig. 2 Proposed system architecture: PSO-based feature selection

4 Proposed feature selection technique

In this section, we propose our technique of feature selection.
The set of features is encoded in a vector. Initially, the vector
is randomly initialized with the values denoting the presence
and absence of features. The robust classifier, CRF, is trained
with the feature combination represented by the vector and
evaluated on the validation set.! The F-score value, which is
used as a fitness function, is computed for every vector. The
F-score value computed at every iteration is used for updating
the features in the subsequent iterations. Finally, we obtain a
set of optimized feature set. These features are finally used
for final evaluation on the test set. Figure 3 provides insight to
the proposed feature selection technique for single iteration.
The methodology of our proposed work is presented in the
form of flowchart in Fig. 2.

4.1 Conditional random field: base classifier

Conditional random fields (CRF) (Lafferty et al. 2001) are
probabilistic models for specifying and classifying sequen-
tial data. A CRF is a form of undirected graphical model
that defines a single log-linear distribution over the label
sequences given a particular observation sequence. As the
named entities (NEs) in text appear as a sequence of words,
for example, in the sentence:

‘Analysis of myeloid-associated genes in human hematopoi-

etic progenitor cells.” Our task is to identify NEs and
classify them into some predefined categories of inter-
est. In the above sentence, NEs are ‘myeloid-associated’
which belong to class ‘DNA’ and ‘human hematopoietic
progenitor cells’ which belongs to class ‘Cell_type’. Some
of the well-known sequence labeling classifiers are hid-
den Markov model (HMM) (Rabiner and Juang 1993),
maximum entropy Markov model (MEMM) (Berger et al.

1A part of training set is used as validation set. We have divided the
original training set into two sets: validation set and new training set.
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(a)
Token Featurel Feature2 Feature3 Feature4 Feature5
Th2 NN B-NP T 1
type NNS I-NP t 0 0
cytokines VBD I-NP c o] 1
in IN B-PP i 0 0
hepatitis NN B-NP h 0 1
B NN I-NP B 1 1
Sample Token with their features
Particles Featurel Feature2  Feature3  Featured Feature5
P2 1 1 1 0 0
P3 1 0 0 1 1
P4 1 0 0 1 o]
P5 0 0 0 1 1
Particles position initializations
(b)
Particle Featurel Feature2 Feature3 Feature4 Feature5 Fitness Best
vale position
P1 0 0 62.50 62.50
P2 1 1 1 0 68.12 68.12 ‘
P3 0 0 1 1 75.16 75.16
P4 1 0 0 1 0 72.52 72.52
P5 0 0 o) 1 1 65.00 65.00

Optimization process after iteration-i
Global Best position value= 75.16

Feature4 Feature5 Fitness Best

value position

Particle Featurel Feature2 Feature3

P1 1 1 1 0 1 60.21 62.50
P2 1 0 o] o] o] 75.21 75.21
P3 1 0 1 1

1

1 74.12  75.16

PS5 1 1 0 1 1 68.10  68.10

Optimization process after iteration- (i+1)
Global Best position value= 76.54

Fig. 3 PSO optimization process: a A sample token with some of the
features to illustrate the process of selecting features at each iteration
through PSO algorithm. Here the value of 1 represents that feature
is selected and O represents that the feature is pruned. b A random
initialization of particle position after iteration i and next iteration (i +
1), shadow row denotes the fittest particles in that iteration. Global
best position value after each iteration denotes the global best solution
obtained. All fitness values are hypothetical

1996) and conditional random field (CRF). Literature shows
the success of CRF classifier (Ekbal and Saha 2013; Kuo
et al. 2007; Klinger et al. 2007) for NE extraction. This
has motivated us to use CRF as the base classifier. CRF
calculates the conditional probability of label state ¥ =
(¥1, y2, ..., yr) for the given observation sequence X =
(x1, x2, ..., x7). For INLPBA data, the labels are as follows:

= {B-Protein, I-Protein, B-DNA, I-DNA, B-RNA, I-RNA,
B-cell_type, I-cell_type, B-cell_line, I-cell_line, O}. With
this given labeling, our example sentence looks like as shown
in Table 2. The conditional probability is calculated as:

Py, y2, .., y71X) = 7 H(Ei(Yi, X)&-/(Yi, Yi—1, X))

M
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Table 2 Illustration of CRF labeling for feature function

i Vi Yi-1 Xi

1 (0] - Analysis

2 0} o of

3 B-DNA (0] myeloid

4 I-DNA B-DNA -

5 I-DNA I-DNA associated
6 o I-DNA genes

7 o o in

8 B-cell_type (0] human

9 I-cell_type B-cell_type hematopoietic
10 I-cell_type I-cell_type progenitor
11 I-cell_type I-cell_type cells

where &; and gi’ are defined as follows:
&(Yi, X) = exp (Z Miesk (Vi X i)) )
k

& Yi, X) =exp | D At (s yi1, x,) 3)
J

where #; and sy are transition feature function and state fea-
ture function, respectively. The transition feature function ¢;
depends upon the current label y; , previous label y;_; and
observation sequence x at time i. The state feature function is
the function of current label y; and observation sequence x at
time i. Parameters A ; and 7y are to be estimated from train-
ing data. A real-valued features g(x, i) is to be define while
making either of two feature function. This feature g(x, i)
of observation sequence x expresses some characteristic of
the empirical distribution of the training data that should also
hold of the model distribution. An example of such a feature is

1 if the observation word at position i
g(x,i)= is ‘hematopoietic’

0 otherwise

The value of one of these real-valued observation fea-
tures g(x, i) has been assigned to each feature function. Both
feature functions are therefore real-valued. For example, con-
sider the following transition function:

g(x,i) if yj_1 = B-cell_type and y;
(i, yi—1,x,10) = = I-cell_type

0 otherwise

For ease of notation, we combined both state feature function
and transition feature function into a single feature function

fi (i, yi—1, x,i). If there are n such feature function then
global feature function F; (Y, X) can be written as:

Fi(Y, X) =" £ i yie1, %, i) €

i=1

By using Eq. (4), we can rewrite conditional probability of
state sequence Y given observation sequence X is as follows:

1
P(Y|X, %) = ——exp > aF(Y, X) Q)
* j

The normalization term, Z,, is determined by computing the
above sum for all possible label sequences. There are various
methods used to train CRF, and they differ only in the objec-
tive function which is optimized (maximized/minimized).
One of the method is penalized log-likelihood. The log-
likelihood L is computed by summing the log-probabilities
for a fixed set of weights A = {A1, A2... A7}, over whole
training instances in dataset D. The penalized log-likelihood
over whole training instances D is given by

[|A]?
262

La(D)= ) log PA(Y|X) —
Y. XeD

(6)

o? is over parameters, which facilitates optimization by

making the likelihood surface strictly convex. Here, we set
parameters A to maximize the penalized log-likelihood using
limited-memory BFGS (Shanno 1970), a quasi-Newton
method that is significantly more efficient.

4.2 Feature encoding

The features are encoded using binary-bit values. Length
of the vector is decided by the total number of features
available. There are many variants of the standard PSO,
and binary PSO is one such version. In binary PSO, a
potential solution to a problem is represented by a particle
7’)(1’) = (p@, 1), p@,2),..., p(,n)) in an n-dimensional
search space, where p(i,k) € (0,1),i = 1,2,..., N and
k =1,2,...,n. Here, ‘N’ represents the total number of
particles or potential solutions in a given swarm and ‘n’ rep-
resents the total number of features. Thus the length of each
particle is n. Features being selected are distinguished on the
values of 0 and 1.

For a set of features ‘F’, F = {f1, f2, f3, fa}, the first
element of 7’) (7) corresponds to the first feature (f1). Simi-
larly, 73) (7) is the set of total 4 features where f, represents
the second feature, f3 is the third feature and so on. Each
feature can have value either O or 1. Feature with value ‘1’
denotes that corresponding feature takes part in training. The
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Table 3 Feature encoding

Particle Binary feature encoding
P (1,00, 1, 1)
P (1,1,1,0,0)
P3) (0,1,0,1,0)
P @) (1,0, 1,1,1)

value of ‘0’ represents that respective feature is not consid-
ered further for training. For example, for the feature list
F ={f1, f2, f3, fa, fs} and N = 4, the swarm can be rep-
resented as shown in Talll)e 3.

Here, for the particle P (1) = F = {1, 0,0, 1, 1}, the first
position corresponds to 1 which means feature f; is present
and is selected for training. Second and third bit positions are
0 which representthat f>, f3 arenotselected for training. The
bit positions, fourth and fifth are set to 1 which correspond
to the selection of f; and fs. It represents the solution where
features f1, f1 and f5 are the only selected features.

The proposed approach based on binary PSO is carried
out in the following three steps.

(1) Setting up the initial population;

(2) Updation of the global best position and best position of
particles;

(3) Updation of velocity vector; and

(4) Sampling of the new particles.

4.3 Setting up the initial population

The initial population is set randomly for the N binary strings,
each having length n. Each particle 7D> (i) is individually pro-
duced in the following way. At each position p(i, k) of 7’) (1),
an uniform random number ¢ is generated between the range
(0, 1). For example, if the midvalue is selected to be 0.5, we
can set the value of p; ) = 1 for § < 0.5 else p( ) = 0.

4.4 Updation of the global and best position values

The best position of any particle 7’)(1' ) is denoted by I_B)(i )
which is initialized by null value. After the generation of
initial particles, we set the value of 7?)(1' ) to the position
vector of the particle TD)(i ). Updation of the ‘pBest’ occurs
in every iteration if it satisfies some condition. Initially, the
fitness value for each particle is set to null. Best position
is updated in case of improvement in the fitness value of
the new position value over previous; otherwise, the value
remains unchanged, i.e., when value of f (79) (7)) exceeds by
the value of f (7?) (7). Same procedure is followed for the
updating the ‘gBest’. This updation is done only after we
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retrieve all the best positions ‘pBest’ values. The ‘gBest’
is initialized to null value, and it is updated only when the
fitness function value f (79) (i)) of the swarm is better than
f (8 (7)). The value of the global best position vector is not
updated if it fails to satisfy this condition.

4.5 Updating velocity

Updation of velocity helps the particles to fly around the
search space so that these eventually move closer to the
target solution. Each particle has its own velocity vector.
At the beginning, we set the value of the velocity vector
T/)(i) = (v, 1), VG,2), - - - » V(i,n)) randomly. Updation of the
velocity and position of each particle is done by the following
equation:

V(ik) = V(i k) +O1(Di k) — Pik) T 02(8k) — P k) @)

Here, w(0 < w < 1), specifies the inertia weight which
was included in Eq. (7) to control the velocity explosion,
is a constant value set by user according to their problem
specifications. ¢ and ¢, represent the learning parameters
and constant value specified by the user, respectively. The
velocity is updated as per Eq. (7). Inertia weight keeps track
of important information about the path that a particle fol-
lows. The value of inertia weight is set according to the
problem definition in order to obtain good solutions. Explo-
ration and exploitation of the search space can be controlled
using the inertia weight. If the value of w > 1, the veloc-
ity increases over the time which leads to the divergence
in swarm. Particles decelerate if w is setas 0 < w < 1.
In this setting, convergence depends on the value of learning
parameter (¢1, ¢2). Selection of negative value has no impact
on the performance of binary PSO as setting this term may
not lead to any effect in giving the next path to the parti-
cles.

4.6 Selection of new particles

Selection of new particles is quite similar to that of standard
PSO with the minor modification. Velocity remains continu-
ous while position is updated using the velocity which is set
according to the mathematical expression listed below.

1 if (random < S(v( k)))

Pk = {O otherwise

where 0 < random < 1 is an uniform random number.

1
1 +exp(— 7 (.p)

S((,x) =
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This represents the sigmoid function. Thus, we set the value
of 0 and 1 on the basis of the values of the velocity (Correa
et al. 2006).

4.7 Algorithm: at a glance

1. The initial population is set randomly for the N binary
strings having the length n (where n denotes the available
set of features). Position of a particle 73) (i),is setto {0, 1}
on the basis of the midvalue specified:

- _ ] 1 if(random > mid)
PG =10 otherwise

2. Evaluation of each particle 7’)(1') is done by calculating
its fitness function f (7’) (7)). Initially, the particle best
position and global best position are initialized to empty.

3. The ‘pBest’ value is updated if the value of f(?’)(i)) is
greater than f (E) (0)).

4. The ‘gBest’ value is updated only when the fitness func-
tion f(? (7)) in the swarm is superior than f(a) (i)).

5. At the beginning, we set the value of the velocity vector
T/)(l) = (v(,"l), V(i,2) - -+ v(i,,,)) randomly. Position and
velocity of each particle are updated with every iteration
using following equation:

V(ik) = @V k) T P1(bi k) — Pak) + 02(8k) — Paik)
(®)
6. Selection of new particle is done on the basis of position

which is updated using the velocity that is set according
to the following mathematical expression:

)t if (random < S(v( x)))
PG =10 otherwise

where 0 < random < 1 is an uniform random number.

1
1+ eXp(__U)(i,k))

S(x) =

This represents the sigmoid function. Thus, we set the
value of O or 1 on the basis of the value of velocity.
7. Repeat step 2 until convergence.

5 Features for entity extraction

Domain-independent feature set is used to build our model
using CRF. Below we have discussed in detail the features
used for extracting named entities from biomedical domain.
Many of these features were motivated from the prior works
such as (Ekbal and Saha 2013) (Table 3).

Table 4 Illustration of input for local context feature, for the current
token glucose

Token Feature-1 Feature-2

Large 1 B-NP

number PRP B-NP

of VBZ B-VP

glucose DT B-NP > CURRENT TOKEN
in 1 I-NP

enzyme NN I-NP

constitute VBZ B-NP

Table 5 Illustration of obtained local context feature, for the current
token glucose

Token Feature-1 Feature-2
number PRP B-NP

of VBZ B-VP
glucose DT B-NP

in 1 I-NP
enzyme NN I-NP

1. Local context Local context refers to the tokens which

appear in the surrounding of the target token. Con-

text can be represented mathematically as: wl’J_rl1 =
w!=' .. w!*! where w; represents the current word. In

our work, we consider the context in the range of wl’irg .
Here in given Table 4 the column position one repre-
sents the token and the second and third represent the
attributes. If the context window size is selected to be
in the range of wf_r% , then from the example given in
Table 4, following tokens or words would be selected as

the context word reported here in Table 5.

. Word prefixes and suffixes These refer to the fixed

length character sequences removed either from the left
or rightmost positions of the words. For example, the
suffix and prefix of word ‘Number’ are- N, Nu, Num,
Numb and r, er, ber, mber, respectively.

. Word length The words which are relatively shorter in

length have less chances of being a NE. We define a
binary feature that triggers the value 1 if word length is
greater than the threshold being specified by the user,
otherwise it is set to 0. Here we consider the threshold
length to be 5.

. Infrequent words It has been observed that words

which are more frequent does not come under the list of
named entities. Taking this point into consideration, we
compile a dictionary from the given training data and
include those words that have the frequency of occur-
rences less than 10 times. We define a binary feature
that triggers the value 1 if the token is there in the dic-
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10.

tionary or 0 if not present. This threshold is declared on
the basis of the size of the dataset.

. Part-of-speech(PoS) information Part of speech (PoS)

is very vital feature for identifying NEs. This provides
useful evidence that helps detecting important grammat-
ical properties. Words are assigned the same PoS if they
have same syntactic behavior. Here PoS information of
the current and/or the surrounding tokens are used as fea-
tures. The PoS information was extracted from GENIA
tagger? V2.0.2.

Chunk information Chunk information is extracted
from GENIA tagger v2.0.2 corpus. This feature is highly
beneficial in boundary identification for biomedical enti-
ties. Here, we consider the chunk information of the
present and neighboring tokens.

. Unknown token feature The binary feature is defined

that is triggered to value 1 if the target token in the test
data was present in the training data, else we set this
value to be 0. We randomly set the value of this feature
in case of classifier training.

Word normalization Two distinct features have been
selected for word normalization. The first feature is
defined that is used to tackle the words having the plural
form, hyphen, verb, digit and alphanumeric letters. This
feature converts the word to its root form. The other fea-
ture specifies the orthographic construction of the target
words. Word shape is defined as the mapping of each
word to the equivalent class. In order to implement this
feature, we normalize the words by converting every
capital character by ‘A’, and small character to ‘a’. We
reduce every digit by ‘0’. For example, if we consider
the token ‘Ly-49’, the normalized word for this token
would be ‘Aa-00’.

Word-class feature Word-class feature is implemented
taking into the consideration that some kind of enti-
ties, which reside in the same class, are identical to
each other. Here also similar to the word normaliza-
tion feature, we convert the capital letters to ‘A’, small
letters by ‘a’, numbers to ‘O’ and non-English charac-
ters to ‘-, respectively. Further after this conversion, we
squeeze the consecutive characters into single character.
For example, the word-class feature for the token ‘IL-2-
mediated’ is ‘AA-O-aaaaaaaa’, which is further reduced
to ‘A-O-a’.

Head nouns Head noun in a noun phrase often provides
useful evidence in classifying NEs. Head noun describes
the function of NE. For example, ‘IL-2-mediated’ is a
noun phrase where the term ‘mediated’ represents a head
noun. From the NLPBA training set, we extracted a list
of 912 head nouns. We consider only the most frequently
occurring head nouns.

2 http://www.nactem.ac.uk/GENIA/tagger/.
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Verb trigger The verbs that appear in the surrounding
context of NE provide useful information for classifying
the target entity. We extract the most frequently occur-
ring verbs from the training set and use these to define a
binary-valued feature.

Informative words Informative are the words that help
inidentifying NEs. Named entity includes the words that
are, in general, very long and contains many common
words and/or symbols inside it. These include the words
like functional words and nominal words that occur most
often in the training data, but do not help in NE classi-
fication. On the other hand, many words, that appear
either as part of NE or outside NE, could be effective in
NE identification. We first generate a list of words that
occur within the multiword NE. As digits and symbols
are not helpful in NE identification, we eliminate these
from the list. In order to check how good is the word to
identify the NEs, we assign them some weights. Some
highly frequent informative words are listed here from
GENIA datasets.

IL-2, gene, NF-kappa, B, receptor, T, cell, primary, lym-
phocytes, complex The list of word is generated that
occur in the multiword NE. To identify which word is
more prominent in identification of the NEs, weight is
assigned. The NE,,(#;) is calculated as follows:

NEyw(t;) = Total no. of occurrences of #; as part of NE
Wtl%i) = Total no. of occurrences of #; in the training data

9
The words, whose frequency of appearing as the part of
NE in the training set is more than two, are considered
to be as informative. The others left words are classified
into the following classes:

(a) Class 1 Words whose frequency is greater than 100
and their NEw(¢;) > 0.4.

(b) Class 2 Words appearing in the range between 20
and 99 and their NE(#;) > 0.6 are categorized in
this class.

(c) Class 3 This class includes the words that have
occurred in the range between 10 and 19 with their
NE(z;) > 0.85.

(d) Class 4 Words having the occurrences >5 and <10
with their NEy(#;) > 0.90 belong to this class.

(e) Class 5 Words that have occurred less than 5 times
with their NEy(#;) lying between 0.9 and 1 are
included in this class.

The binary feature vector of length 5 (with respect to
class) is generated. The feature value ‘1’ is set for the
particular class if the target word belongs to any of the
above-mentioned classes. If it does not belong to any of
the class, the value is set to ‘0’.
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Table 6 Orthographic feature

set with example Feature Example Feature Example
InitCap Number AllCaps IL
InCap mRNA CapMixAlpha AbCa
DigitOnly 1,10 DigitSpecial 10-0
DigitAlpha IL-10 AlphaDigitAlpha ILIORNA
Hyphen - CapLowAlpha Abcd
CapsAndDigit 32Receptor10 RomanNumeral LI
StopWord in, of, at ATGCSeq ATAAG, CGCCA
AlphaDigit mo60, p66 DigitCommonDigit 1,50
GreekLetter o, B LowMixAlpha mBc, mRNA

13. Content words in surrounding contexts In order to
explore the global context information, this semantic
feature was used in our work. We include all those uni-
grams that occurred within the context window size(
wf_rg ) for w; (words) from training data. We changed the
token to the lowercase and eliminated special symbols,
punctuations, numbers and stopwords. By using the 10
most frequent content words, we defined a feature vector
of length 10. Given a classification instance, the feature
related to token is set to 1 if w; occurs within the context
window size. In the GENETAG test set, we defined this
feature using NE output predicted by the GENIA tagger.
The obtained features are found to be effective.

14. Orthographic features We implement various ortho-
graphic features that consider capitalization and digit
information. In the biomedical data, usage of the special
characters like (¢, *-°, ., *_’) is very common. These
symbols are very helpful in entity extraction. These fea-
tures are listed in Table 6. Some symbols like *,” are very
useful in detecting the boundaries of the NEs. Some fea-
tures are also defined to examine the existence of ATGC
sequence and stop words. These features defined above
are the binary features that trigger the value of 1 when
a particular feature is satisfied. We list all the features
with example in Table 6.

6 Datasets and experiments

This section describes the datasets that we have used for our
experiments, mentions about the assessment scheme, reports
the experimental results and presents detailed analysis along
with comparisons to the existing systems. To carry out our
experiment, Conditional Random Field (CRF) (Lafferty et al.
2001) was used as the base classifier. We used C++ based
CRF++ package? for our implementation with default param-
eter setting.

3 https://taku910.github.io/crfpp/.

6.1 Evaluation scheme

For the assessment of classifier’s performance, standard met-
rics such as recall, precision and F-measure are used for
our system evaluation. Precision is defined as the fraction
of retrieved NEs that are relevant to the total retrieved NE
chunks. Recall is defined as the fraction of accurately pre-
dicted NE chunks to the actual NE in labeled data.

Number of correctly identified NE

Precision = Total number of NE predicted by the system (10)
__ Number of accurately predicted NE
Recall = Number of actual NE in labeled data (11)

F-measure is the harmonic mean of precision and recall and
is defined as follows:

1+ a?)(recall precision)

F, = a=1

— (12)
a“ * precision + recall

Here « is a positive real value. The traditional F-measure
(F1 score) is the harmonic mean of precision and recall. For
evaluation of GENIA, GENETAG, AIMed we use the script,
which was made available for the INLPBA 2004 shared task.
4 For BC-II, we used the script provided by BioCreative
shared task.

6.2 Datasets

We evaluate our system on four datasets, namely GEN IAS,
AIMed®, GENETAG’ and BioCreative-1I[(BC-II) gene men-
tion® challenge datasets. These datasets were created fol-
lowing different annotation schemes. GENIA version 3.02
corpus was developed by controlled exploration on MED-
LINE using the MeSH terms such as ‘human’, ‘blood cells’

4 http://www.nactem.ac.uk/tsujii/ GENIA/ERtask/report.html.

3 http://www.geniaproject.org/shared- tasks/bionlp-jnlpba-shared-task
-2004

6 ftp:/ftp.cs.utexas.edu/pub/mooney/bio-data/.
7 ftp://ftp.ncbi.nlm.nih.gov/pub/tanabe/ GENETAG.tar.gz.

8 http://biocreative.sourceforge.net/biocreative_2_dataset.html.
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and ‘transcription factors’. Total 2000 abstracts of around
500K wordforms were selected from this search. On the basis
of chemical classification, 48 classes having small taxon-
omy were selected. To define GENIA corpus 36 classes were
selected among the above set of classes. This dataset was
further reduced to be trained with five NE classes, namely
Protein, DNA, RNA, Cell_line and Cell_type. Test dataset
compromises of 404 abstracts having 100K words.

AlMed corpus is generated from 197 abstracts extracted
from the Database of Interacting Protein (DIP) and 28
abstracts which contain protein names but do not contain
any interaction-related information with the total of 1944
sentences. It has been viewed that AIMed dataset is highly
imbalanced as this is heavily biased toward the negative
examples.

GENETAG dataset is contained in the dataset of ‘Med-
Tag’. The dataset compromises of correct and incorrect gene
or names of protein in different contexts. The dataset con-
sists of total 20,000 sentences having gene/protein names.
The aim was to identify the ‘NEWGENE’ term (denoting
gene names) in medical abstracts. For building the system,
we use 7500 labeled sentences for training and 2500 sen-
tences are used for validation. Testing was done on 5000
unlabeled sentences. In this dataset, the sentences which are
more informative (in terms of NE) were included, while other
sentences were discarded. GENIA and GENETAG are very
similar to each other as compared to AIMed. In the dataset of
GENIA and GENETAG, longer text fragments are selected
as the entity references. Both GENIA and GENETAG consist
of the semantic category word ‘protein’ for protein annota-
tions. In order to properly denote the boundaries of NE, we
use the IOB2° encoding scheme.

BioCreative II dataset on gene mention recognition is also
used to carry out our experiments. Dataset consists of the
sentences from the MEDLINE abstracts which are anno-
tated manually for the gene mentions. The dataset is built
by including the abstracts consisting of both the gene names
as well as the abstracts which do not contain any gene names.
The dataset comprises of 15,000 sentences, out of which we
take only 2500 sentences as the development data. As a test
set, we use 5000 sentences. For our experimental analysis,
we use the same training, development and test sets as pro-
vided by the respective shared task organizer. Therefore, the
comparison that we present here is fair.

6.3 Results and analysis
We develop three baselines to compare our proposed tech-
nique for each dataset. For all of our baseline, we used CRF,

as a base classifier to train our model.

9 1, 0 and B represent the intermediate, outside and beginning token of
aNE.
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— Baseline 1 This baseline model is trained using the com-
plete set of features as described in Sect. 5.

— Baseline 2 This baseline model is trained on the features
selected using correlation-based feature selection tech-
nique (filter-based model).

— Baseline 3 In this baseline model, classifier is trained on
the feature selected using recursive feature elimination
algorithm (Guyon et al. 2002) (wrapper-based model).

We apply our proposed technique to identify the significant
set of features, and the corresponding results are reported in
Table 7. This shows that PSO-based feature selection tech-
nique achieve better performance for each domain.

We also made an interesting observation that the mod-
els developed using the pruned feature sets achieve better
accuracies on all the datasets. Results that we obtain through
PSO-based feature selection are also better than the baseline
2 and 3. We identified algorithm selected only 28, 29, 25
and 22 features out of 57 features on GENIA, GENETAG,
AlMed and BioCreative-II dataset, respectively.

In order to examine the statistical significance of the
obtained results, we perform analysis of variance (ANOVA)
(Shapiro and Wilk 1965) test. It has been observed that dif-
ferences between the proposed approach and the baselines in
terms of F-measure are statistically significant as p value is
less than 0.05.

6.4 Sensitivity analysis of PSO parameters

We perform several experiments using different parame-
ter settings of PSO, and thereby, we provide a thorough
sensitivity analysis for determining the optimal parameter
settings of PSO. Shi and Eberhart (1998), authors have
set the parameters w as 0.7298 and ¢; = ¢ as 1.49618.
Pedersen (2010) authors have suggested an unique way of
obtaining the different values of parameters on the basis
of the optimization scenarios. On the detailed studies of
prior works (Shi and Eberhart 2001; Alatas and Akin
2008) and after performing several experiments with dif-
ferent parameter settings on the validation set, finally we
set the different parameter values of PSO. Results using the
best five parameter combinations on validation dataset are
shown in Table 8. We name these as PSO-1, PSO-2 and
so on. We fix the swarm(population) size as 20 particles
and the number of iterations as 100 for all our experi-
ments. For the GENIA data set, the best result is obtained
for the following parameter combination: inertia weight,
learning parameter-I1 and learning parameter-II to ‘0.7298’
,'1.49618’, ‘1.49618’, respectively. For GENETAG dataset,
the highest accuracies were reported by setting inertia weight
to ‘0.3925’, learning parameter-I to ‘2.5586° and learning
parameter-1II to ‘1.3358°. Similarly for AIMED dataset, the
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Table 7 Results of baseline and

PSO-based feature selection Model Objective dataset GENIA GENETAG AlMed BC-1I
Baseline-1 No. of features 57 57 57 57
Recall 70.19 95.70 89.23 81.64
Precision 67.31 80.83 87.64 82.67
F-score 68.72 87.64 87.98 82.15
Baseline-2 No. of features 30 24 28 24
Recall 66.80 91.95 95.58 79.24
Precision 75.88 89.29 83.07 91.14
F-score 71.05 90.60 88.89 84.78
Baseline-3 No. of features 23 37 25 25
Recall 72.14 93.68 89.98 85.47
Precision 73.27 86.19 86.19 86.52
F-score 72.70 89.77 88.04 85.99
CRF[PSO] No. of features 28 29 25 22
Recall 77.25 96.00 90.73 94.79
Precision 73.37 90.28 89.46 84.08
F-score 75.26 93.05 90.09 89.11
fT;lt’l'l‘r’essei‘zst‘i‘éﬁ Svfitisd?f-f]:i? PSO-RUN  Parameter settings GENIA  GENETAG  AIMed  BC-I
parameter settings Inertia weight b1 1033 F-score F-score F-score F-score
PSO-1 0.7298 1.49618  1.49618 75.26 92.70 89.97 88.10
PSO-2 0.3925 2.5586 1.3358 74.10 92.78 90.09 89.11
PSO-3 —0.4349 —0.6504 2.2073 73.90 92.35 89.96 87.56
PSO-4 0.4091 2.1304 1.0575 73.80 92.78 90.09 87.70
PSO-5 —0.3593 —0.7238 2.0289 74.50 93.05 90.03 88.55
best parameter combinations are inertia weight = ‘0.4091°, % GAbasedFs  mPsObased FS
learning parameter-I = 2.1304” and learning parameter-II = 1:2 120
‘1.0575’(Fig. 4). 3 100 N
The best accuracy is reported on BC-II dataset with the E %5 68.86
setting of the following PSO parameters: inertia weight £ 60 N N 5.4
to ‘0.3925°, learning parameter-I to 2.5586° and learn- £ 4 2035 ¥
ing parameter-II to ‘1.3358’. Learning parameter-I & II ZZ | I l I I
are known as self-learning parameter and global learning GENIA GENETAG AlMed BC-II
W GA based FS 120 36.67 42.47 68.86

parameter, respectively. These are basically the acceleration
coefficients that control self best position and global best
positions of particle, respectively. The optimal parameter set-
ting varies across the datasets. The factors contributed to this
are the variations in the dataset size and the dimensional-
ity of the problem (Pedersen 2010). We observe that with
the increase in the number of iterations, F-measure value
also increases for all the four datasets. This is because with
every iteration the swarm becomes more intelligent with the
knowledge of the global best position and self best posi-
tion, and it converges to the best solution. Figure 5 illustrates
this property. We show the learning curves in Fig. 6 by
performing experiments with the different sized training sam-
ples.

W PSO based FS 88.6 20.35 29.15 45.4

Data sets

Fig. 4 The Comparison of single iteration execution time of GA and
PSO based feature selection on population (particle) size 10 utilizing
CREF as base classifier

6.5 Analysis of feature combination

The selected features using PSO technique for different
datasets are reported in Table 9. It has been observed that
for GENIA dataset, the features that have not been selected
are dynamic NE tags, word length and infrequent word. As
context feature, the system is able to select 2 features out of
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Fig. 5 Variations in F-score values obtained by the proposed PSO-based feature selection technique with the increase in the number of iterations.

a GENIA, b GENETAG, ¢ AIMED, d BC-II datasets

total 6. In content features of length 10, only 6 are selected.
While in the orthographic features of length 17, the system
has selected 10 features. The PSO-based feature selection is
able to select 1 feature from prefix, 2 features from suffix
feature set, 2 features from word normalization feature and
1 feature from the informative word feature.

For the GENETAG dataset, only word length and infre-
quent words have not been selected fully. While the system is
able to select 3 context features from total of 6 features, 6 fea-
tures from content features of length 10, 9 features from total
17 orthographic features, 2 prefix features, 2 suffix features,
1 feature of word normalization, 1 feature from informative
word have been selected.
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For AIMed dataset, prefix, informative words, dynamic
NE tags, infrequent words features have not been selected.
Only 5 features have been selected from context features of
length 6, 5 out of 10 features from content feature, 7 ortho-
graphic features out of 17 features, 2 suffix features out of 4
have been selected and one feature from word normalization
feature have been selected.

For BC-II dataset, we observed that prefix, informative
words, dynamic NE tags, word length, infrequent word, verb
trigger feature have not been selected, while 3 context fea-
tures, 5 content features, 9 orthographic, 1 suffix, 1 word
normalization have not been selected by the system.

We have observed that head noun, verb trigger, chunk
information have been selected in the optimal feature set
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Fig. 6 Variations in F-score values obtained by the proposed approach with the increase in the number of training samples for different biomedical
datasets. a GENIA, b GENETAG, ¢ AIMed, d BC-II. The trend shows that with the more number of training samples we get higher F-score

for all the four datasets because with the inclusion of these
features, model performance has been improved. As PSO
guarantees to determine the optimal set of solutions, all the
good features via global best solutions have been selected.
We have also evaluated the models for more detailed analysis
that considers the left and right boundary matching of each
entity. These results are reported in Tables 10, 11, and 12 for
GENIA, GENETAG and AIMed datasets, respectively. The
precision, recall and F-measure are evaluated with respect to
the following three types:

1. FULLY correct It specifies the condition when the bound-
ary specified by the proposed generated system matches
with that of labeled data on both the sides.

2. Correct LEFT boundary It specifies the condition when
boundaries estimated by the proposed system and the
labeled data are similar on the left side of predicted
NE.

3. Correct RIGHT boundary It specifies the condition when
boundaries estimated by the proposed system and the
labeled data are similar on the right side of predicted
NE.

6.6 Comparison with existing wrapper-based models

The proposed study performs the comparison with other
wrapper-based models. In particular, there are two dif-
ferent variants of wrapper models viz Randomized- and
Deterministic-type wrapper model. Randomized-type wrap-
per models perform classifier dependent feature selection and
are less prone to stuck at local optima, for example, genetic
algorithm (GA) (Holland 1992), randomized hill climb-
ing (Skalak 1994), simulated annealing (Lin et al. 2008).
Deterministic-type wrapper model is the simple variant of
wrapper-based feature selection which is computationally
less complex than randomized type; however, it is more
prominent to get stuck at local optima. Popular randomized
wrapper-based model includes sequential forward selec-
tion (Kittler 1978), sequential backward elimination (Kittler
1978), recursive feature elimination (RFE) (Guyon et al.
2002).

In our study, we have explored popular genetic algorithm
(randomized) and recursive feature elimination (determin-
istic) to perform comparison with our proposed PSO-based
approach as shown in Table 17.
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Table 9 Feature set selected for each of the datasets by the proposed PSO-based feature selection technique

Feature

PoS infor- Chunk
mation

Verb

Dynamic Word Infrequent Head noun
word

NE tag

Informative

word

Suffix ~ Word

Prefix

Orthographic
features

Context Content

Datasets

information

trigger

length

normaliza-
tion

(35-38) (39-42) (45-46)

features

features

(56) (57)

(54) (55)

(53)

(52)

(51

(47-50)

(17-34)

(7-16)

(1-6)

48
50

38,42
41,42

38,41
38

1,6

L,

GENIA

45, 46

46

18, 22, 24, 25, 26, 28, 31, 32, 33,34 37
18, 19, 22, 23, 25, 27, 28, 31, 34

17, 18, 20, 23, 25, 29, 33

7,8,11, 13,15, 16
7,8,9,12,13, 16

3,6

GENETAG
AlMed
BC-1II

36, 38

46

1,2,4,5,6 7,12,13,15,16

1,2,5

46

18, 21, 22, 24, 25, 26, 28, 32, 33

7,8,11, 14, 16

Feature lengths are specified within brackets, and the corresponding selected feature index numbers are listed for each of the datasets. ‘v” denotes the feature has selected, and ‘-~ denotes the feature has not been selected

Table 10 Detailed assessment of the proposed technique on GENIA

dataset

Class Recall Precision F-measure
Overall

FULLY Correct 77.25 73.37 75.26
Correct LEFT boundary 80.98 76.92 78.90
Correct RIGHT boundary 84.41 80.17 82.23
Protein

FULLY Correct 82.78 72.92 77.54
Correct LEFT boundary 87.53 77.11 81.99
Correct RIGHT boundary 89.53 78.87 83.87
Cell_line

FULLY Correct 58.11 55.65 56.85
Correct LEFT boundary 63.42 60.73 62.05
Correct RIGHT boundary 70.80 67.80 69.26
DNA

FULLY Correct 73.86 73.62 73.74
Correct LEFT boundary 76.30 76.05 76.18
Correct RIGHT boundary 80.68 80.42 80.55
Cell_type

FULLY Correct 70.54 81.21 75.50
Correct LEFT boundary 71.87 82.74 76.92
Correct RIGHT boundary 77.20 88.87 82.62
RNA

FULLY Correct 71.83 72.86 72.34
Correct LEFT boundary 74.65 75.71 75.18
Correct RIGHT boundary 80.28 81.43 79.71

Table 11 Detailed assessment of the proposed technique on GENE-

TAG dataset

Class Recall Precision F-measure
Overall

FULLY Correct 96.00 90.28 93.05
Correct LEFT boundary 97.46 91.65 94.47
Correct RIGHT boundary 96.59 90.83 93.62
NEWGENE

FULLY Correct 97.19 90.31 93.62
Correct LEFT boundary 98.67 91.68 95.05
Correct RIGHT boundary 97.77 90.84 94.18
NEWGENEI

FULLY Correct 01.35 33.33 02.60
Correct LEFT boundary 01.35 33.33 02.60
Correct RIGHT boundary 02.70 66.67 05.19

The obtained results show that PSO outperforms RFE
for all the four datasets and GA for three datasets (GENIA,
GENETAG, BC-II) in terms of F-score and the number of fea-
ture selected. On AIMed dataset, GA-based feature selection
technique performs comparable to PSO in terms of F-score.
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Table 12 Detailed assessment of the proposed technique on AIMed
dataset

Class Recall Precision F-measure
Overall

FULLY Correct 90.73 89.46 90.09
Correct LEFT boundary 95.10 93.76 94.42
Correct RIGHT boundary 91.89 90.60 91.24

We also observe that PSO was more efficient than other two
feature selection techniques in identifying the small subset
of features (Tables 15, 16).

6.7 Comparisons with the existing systems

This section presents the comparison of our system with the
other state-of-art systems that have used the same datasets
to perform experiments. In our proposed approach, we did
not use heavy domain-specific resources and/or tools except
PoS and chunk information. Our system is able to outper-
form the best system on the GENIA, BC-II datasets. On
GENIA dataset, we achieve the F-measure value of 75.26%.
The F-measure value on GENETAG dataset is 93.05%, on
AlMed the obtained F-measure value was 90.09% and on
BC-II dataset, we achieve the F-measure value of 89.11%.
Tables 13, 14, 15 and 16 show the comparison with the exist-
ing technique on GENIA, AIMed, GENETAG and BC-II
dataset, respectively. We observed that the results obtained
on AIMed dataset were not able to beat (Ekbal et al. 2013).
In context to that we would like to mention that the (Ekbal
etal. 2013) used genetic algorithm using the population size:
200, while in PSO, we set the population size:20 which is
significantly very less. However, when we set GA with the
same population size as PSO, we obtained comparable F-
score value as shown in Table 17. It should be noted that
in case of AIMed dataset, majority of the work is carried to
extract the protein interaction pair assuming the entity (pro-
tein) is already identified. As our basic aim is to develop a
generic system that can perform well across several biomed-
ical domains, we were motivated to use AIMed dataset to
validate our approach.

7 Error analysis

Our close investigation to the obtained results during the
experimentation shows that the model developed for biomed-
ical entity extraction suffers due to the implicit representation
of target tokens. Proper boundary identification of NE often
creates a problem.

We perform error analysis in terms of confusion matrices as
shown in Tables 18, 19, 20 and 21 for AIMed, GENETAG,
GENIA and BC-II datasets, respectively.

For the AIMed dataset, a large number of ‘B-protein’
(Begin of protein term) and ‘I-protein’ (Intermediate tokens
of protein term) were wrongly classified as ‘O’ (Others).
A sum of 171 instances were wrongly classified for these
two classes. It was observed that majority of the mis-
classifications was due to incorrect prediction of non-NE
terms by NEs. This case was mostly between ‘O’ with ‘B-
NEWGENE’ or I-NEWGENE"’.

In the GENETAG dataset, it was investigated that only ‘B-
NEWGENE’ was incorrectly predicted as ‘O’ while it was
also observed that most mis-classifications were due to the
fact that all the other classes were wrongly predicted as ‘I-
NEWGENE’. The possible reason behind this anomaly was
due to the occurrence of ‘I-NEWGENE’ in most of the times
in the training data. Our system was unable to predict the
‘O’ tags. A total of 743 instances were wrongly predicted as
‘I-NEWGENE’ and ‘B-NEWGENE’.

For the GENIA dataset, the ‘I-cell_line’ and ‘I-cell_type’
were not predicted correctly. About 284 instances of ‘I-
cell_line’ were incorrectly predicted as ‘I-cell_type’ and 73
instances of ‘I-cell_type’ were predicted as ‘I-cell_line’. We
observe quite similar behavior for the classes, ‘B-cell_type’
and ‘B-cell_line’. A total of 3,275 instances were mis-
classified for these two classes. A significant number of NE
instances are also predicted as non-NE, which might have
caused low recall.

In the case of BC-II dataset, the major cause of the error
was due to wrong entity classification. From the confusion
matrix, it was observed that 427 instances that should be
classified as ‘B-GENE’ were wrongly classified as the ‘I-
GENE’ and 416 instances from ‘I-GENE’ were classified as
the ‘B-GENE’. We also observed error where there was a
case of missing entity. A total of 424 instances were missed
and were predicted as ‘O’. A case of over prediction was also
observed where ‘O’ was predicted by entity. A total of 402
instances were reported such cases. We further analyzed the
output for each dataset. We observed that our system lacks
in correctly classifying the instances which includes paren-
theses. Example of such an instance is reported in Table 22.
In Table 22, system showed acceptable performance in iden-
tifying ‘B-protein’, but was unable to predict the boundary
of the instances as it was unable to tag the parentheses cor-
rectly. It is observed that short word (length 3 or less) started
with capital letter is predicted as NE. This might be due to
the capitalization feature that we defined. Example of such
an instance is reported in Table 23. In training data, there are
enough such instances. It is also observed that the system
makes many errors in identifying the boundary of long NE.
This may be because of the appearance of many symbols
and/or common words inside the NE. Contextual informa-
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Table 13 Comparisons between existing approaches: GENIA dataset

System Classification methodology Domain-specific information F- Measure
Our developed system PSO-based feature selection (CRF PoS, phrase 75.26
and PSO)
Ekbal and Saha (2013) Feature selection (CRF and GA) PoS, phrase 74.90
GuoDong and Jian (2004) final HMM and SVM Name duplication, cascaded NEs 72.55
dictionary, PoS, phrase
GuoDong and Jian (2004) HMM and SVM PoS, phrase 64.1
Kim et al. (2005) Two-phase model with ME and PoS, phrase, rule-based component 71.19
CRF
Park et al. (2006) ME PoS , phrase, domain-salient words 66.91
using WSJ, morphological
patterns,collocations from
MEDLINE
Finkel (2004) ME Gazetteers, web querying, 70.06
surrounding abstracts,
abbreviation handling, BNC
corpus, POS
Settles (2004) CRF PoS, semantic knowledge sources 70.00
of 17 lexicons
Saha et al. (2009) ME PoS,phrase 67.41
Song et al. (2004) final SVM,CRF PoS, phrase, Virtual Sample 66.28
Song et al. (2004) base SVM PoS, phrase 63.85
Ponomareva et al. (2007) HMM PoS 65.7
Table 14 Comparisons between existing approaches: AIMed dataset
System Classification methodology Domain-specific information F-measure
Our developed system PSO-based feature selection (CRF and PSO) PoS, phrase 90.09
Ekbal et al. (2013) Feature selection (SVM and GA) PoS, phrase 93.60
Table 15 Comparison of PSO Objective dataset GENIA GENETAG AlMed BC-TI
with genetic algorithm (GA) and
recursive feature ehmmatlgn GA No. of features 34 37 28 29
(RFE)-based feature selection
F-score 73.84 91.94 90.35 88.76
RFE No. of features 23 37 25 25
F-score 72.70 89.77 88.04 85.99
CRF[PSO] No. of features 28 29 25 22
F-score 75.26 93.05 90.09 89.11

tion, in many cases, does not provide enough information to
predict some of the penultimate or last word of the NE. Such
examples are shown in Tables 24 and 25 for the GENETAG
dataset. We observe similar behavior for the AIMed datasets.
Boundary detection problem was also reported in the case of
BC-II dataset. Examples have been shown in Table 29. In
Table 30, the entity was not correctly classified and is pre-
dicted as ‘O’. Example of such an instance is reported in
Table 23. Our system was unable to properly predict the same
instance if it appears more than once at two different times in
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a sentence. In Table 26, e.g., both instances of ‘NF-kappaB’
were classified as B-protein in the test data, but the second
instance of NF-kappaB was actually not a protein. It was
also seen that for most of the NEs our system was  able to
identify the left boundary but due to some punctuation sym-
bols (“)”,“(*)”)”,”.””) sometimes our system fails to identify
the whole boundary of the NE. Example of such an instances
is reported in Table 27. This leads to some drop in the overall
accuracy of our system. For ‘cell_type’ NE, our system could
not perform well as compared to other NEs because our sys-



Feature selection for entity extraction from multiple biomedical corpora: a PSO-based approach 6899
Table.16. Comparisons between System Classification methodology Domain-specific F-score
the existing approaches: information
GENETAG
Our system PSO-based feature selection PoS, phrase 93.05
(CRF and PSO)
Ekbal et al. (2013) GA-based ensemble (CRF PoS, phrase 93.95
and SVM)
Song et al. (2004) SVM - 66.7
Bickel et al. (2004) SVM A dictionary 72.1
Kinoshita et al. (2005) TnT (Brants 2000), the Dictionary-based 80.9
Trigrams Tags postprocessing
HMM-based
part-of-speech tagger
Mitsumori et al. (2005) SVM Gene/protein name 78.09
dictionary
Finkel et al. (2005) ME-+ postprocessing 82.2
McDonald and Pereira (2005) CRF 82.4
Wang et al. (2008) HMM, SVM, Ensemble Postprocessing 82.58
technique
Table 17 Comparisons between - - - P .
the existing approaches: BC-IT System Classification methodology Domain-specific information ~ F-measure
Our System CRF+ PSO-based feature POS, phrase 89.11
selection
Ando (2007) Semi-supervised learning Word strings and character 87.21
Alternating Structure types of the current and
Optimization (ASO) neighboring words,
domain lexicon lookup
Kuo et al. (2007) CRF POS, phrase abbreviations 86.83
of biological chemical
compounds
Huang et al. (2007) SVM + CRF POS, phrase, 123,503 86.57
predicates to characterize
each word
Klinger et al. (2007) CRF PoS, phrase output of a 86.33
normalizing tagger,
ProMiner
Gancheyv et al. (2007) CRF + Greedy-based Word features based on 86.28
feature selection distributional clustering
Liu et al. (2007) CRF POS, Token shape, Suffix, 85.89
Dictionary-lookup
(BioThesaurus and UMLS
Metathesurus)
Grover et al. (2007) CREF + bidirectional Contextual feature, POS, 84.70
maximum entropy orthographic features,
Markov Model head noun, features
(BMEMM) derived from the
abbreviation matcher and
from in-house protein
gazetteer derived from
RefSeq
Struble et al. (2007) CRF POS, phrase 82.85
Vlachos (2007) CRF POS, phrase 82.84
Baumgartner Jr et al. (2007)  Combining the output of Phrase 80.95

multiple gene mention
identification systems
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Table 18 Confusion matrix of proposed model on AIMed dataset

Table 21 Confusion matrix of the proposed model on BC-II dataset

Reference Predicted Reference Predicted

B-protien I-protien (0] B-GENE I-GENE (0]
B-protein 1074 3 45 B-GENE 5492 427 117
I-protein 26 178 126 I-GENE 416 4631 307
(0] 50 63 1746 (0] 219 183 123021

tem was unable to fully detect the proper boundary which
leads to the mis-classification. Example of such an instance
is reported in Table 28.

7.1 Computational complexity of the system

The cost of computations required for a complete run of the
proposed feature selection approach is the product of the
computations required for PSO and the training time of CRF.
The total cost to run PSO is the sum of the computation costs
required to calculate the cost of a candidate solution and the
computations required to update each particle’s position and
velocity. Let us assume that we have N = no. of particles
and / = no. of iterations, Fyyg is the average number of bits
selected from a given particle. L is the size of label set, T is

total number of features and S is the size of average training
samples. Mathematically, it can be described as:

Cost of a candidate solution = O(Fayg)
Cost to update each particle’s position = O(N) (13)
Cost to update each particle’s velocity = O(N)
Total cost of PSO for a single iteration
= O(Fayg * N)
Total cost to train CRF on active feature set
= O(T % L* % §?) (14)
Total cost to model for a single iteration
= O(Fayg * N)(T % L*  §%)

Total cost of model for / number of iterations

Table 19 Confusion matrix of

proposed model on GENETAG Reference Predicted

dataset B-NEWGENE B-NEWGENEI1 I-NEWGENE I-NEWGENEI1 (0]
B-NEWGENE 5764 0 24 0 44
B-NEWGENE1 2 1 70 0 0
I-NEWGENE 4 0 6393 0 2
I-NEWGENEI1 0 0 67 1 0
(¢} 510 0 233 0 123442

Table 20 Confusion matrix of the proposed model on GENIA dataset

Reference Predicted

B-cell_line B-cell_type B-DNA B-protein B-RNA I-cell_line I-cell_type I-DNA I-protein I-RNA O

B-cell_line 212 33 0 14 0 29 2 0 0 0 49

B-cell_type 93 795 4 56 0 12 36 2 0 0 129

B-DNA 1 0 477 63 0 0 0 15 0 59

B-protein 10 9 36 2622 1 4 0 6 70 0 232

B-RNA 0 0 0 9 53 0 0 0 0 2 7

I-cell_line 21 2 0 0 0 482 73 0 2 0 78

I-cell_type 6 35 0 8 0 284 1290 5 42 0 178

I-DNA 0 0 23 10 0 2 0 872 37 0 103

I-protein 0 2 0 144 0 9 10 56 2230 1 352

I-RNA 0 0 0 3 4 0 0 0 6 99 14

o 37 82 76 459 10 74 70 153 264 6 50227
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Table 22 An example of mis-classification on AIMed dataset

Instances ET( A ) and ET ( B ) receptors in human myocardial trabeculae

Actual B-protien I-protien I-protien I-protien O  B-protien I-protien I-protien I-protien O O (0] (6] O

Predicted B-protien O O (0] O B-protien O (0] (6] O O (6] (6] O

Table 23 An example of mis-classification on AIMed dataset

Instance  We have therefore tested whether other CC chemokines could bind to and activate CCRS .

Actual O O O (0] (0] O (0] O O (0] O O (0] B-protien O

Predicted O O (0] (0] (0] (6] B-protien O (6] (0] O O (0] B-protien O

Table 24 An example of mis-classification on GENETAG dataset

Instances includes the mammalian RGS proteins RGS6 s RGS7 .

Actual (0] (6] B-NEWGENE I-NEWGENE I-NEWGENE B-NEWGENEI (0] B-NEWGENE (6]

Predicted (0] (0] B-NEWGENE I-NEWGENE I-NEWGENE I-NEWGENE (6] B-NEWGENE O

Table 25 An example of mis-classification on GENETAG data

Instances RGS6 s RGS7 s RGS9 s and RGSI11 .

Actual B-NEWGENEI1 o B-NEWGENE O B-NEWGENE (¢} o B-NEWGENE (0]

Predicted I-NEWGENE (¢} B-NEWGENE O B-NEWGENE o o B-NEWGENE (6]

Table 26 An example of mis-classification on GENIA dataset

Instances Cl-1 treatment had no detected effect on NF-kappaB activation in lung tissue .

Actual (¢} 0} o o o 0} (¢} o o o (6] o (6]

Predicted (0] (0] (0] (0] (0] (0] (0] B-protein (0] (0] (6] (0] (6]

Table 27 An example of mis-classification on GENIA data

Instances accessibility of v , D , and J gene segments

Actual (0] (0] (6] O O O O B-DNA I-DNA I-DNA

Predicted (0] (0] B-DNA I-DNA I-DNA I-DNA I-DNA I-DNA I-DNA I-DNA

Table 28 An example of mis-classification on GENIA data

Instances In distinction to drug-free maturing dendritic cells s 2.5 micromol/L

Actual (6] O (6] B-cell_type I-cell_type I-cell_type I-cell_type (6] (6] (0]

Predicted O (0] O (0] (6] B-cell_type I-cell_type (6] (0] (6] (6]

Table 29 An example of

mis-classification on BC-II data Instances The 7.2 kb EcoRI fragment of  AfMNPV was cloned
Actual (0] B-GENE I-GENE I-GENE I-GENE (0] (0] (6] (6]
Predicted O B-GENE I-GENE O (6] O O O o

Table 30 An example of ] ] . .

mis-classification on BC-II data Instances test for  Borrelia burgdorferi  serum antibodies  had  positive  results
Actual O o B-GENE I-GENE I-GENE I-GENE o o o
Predicted O o o o B-GENE I-GENE o o o
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= O(I (Fayg % N)(T % L* %))

We have also calculated the job execution times of PSO
model for performing feature selection. In addition to that,
we have also made comparison with GA-based feature selec-
tion (as both are randomized wrapper models) and found that
computational complexity of PSO is less compared to GA.
We observed that, for the swarm size of 10 particles, PSO
took 5316 s in order to complete a single iteration, while GA-
based approach reported execution time of 7200 s in order to
complete a single generation with population size of 10 chro-
mosomes as shown in Fig. 4. This proves that PSO is much
faster than GA-based approach for solving the problem of
feature selection (Tables 29, 30). In terms of computational
complexity, PSO is less complicated and still achieves better
performance compared to GA. Thus with very limited num-
ber of executions we can achieve good accuracy with the
use of PSO. This proves the utility of PSO-based approach
in feature selection. It not only achieves better performance
compared to GA-based approach but also converges faster.

8 Conclusions and future works

In this paper, we propose a PSO-based feature selection tech-
nique for entity extraction in multiple biomedical domain
corpora. The proposed method makes use of a diverse
feature set, which was implemented without using much
domain-specific resources and/or tools. We have evalu-
ated our approach on benchmark datasets, namely GENIA,
GENETAG, AIMed and BioCreative II (BC-II) gene mention
recognition datasets. We observe that classifier performs bet-
ter with a reduced feature set in comparison with the model
developed with all features. As a classifier we have used
CRF. Evaluation results indicate that the use of binary PSO
for feature selection tends to improve the accuracy and relia-
bility of a classification model on the biomedical dataset. We
have carried out a thorough sensitivity analysis of different
parameters of PSO and have shown their impacts on the over-
all system performance. Evaluation results for the GENIA
dataset show the F-measure value of 75.26% using the pruned
feature set compared to 68.72% F-measure obtained when the
classifier is trained with the complete set of features. Because
of feature selection, we also observed significant perfor-
mance increment for the other three benchmark datasets.
For BC-II dataset, the system was able to improve the F-
measure value by 6.96, 2.11% on AIMed dataset and 5.41%
on GENETAG dataset. Detailed comparative studies with the
other existing techniques also prove the efficacy of our pro-
posed technique.

In the present work, we develop feature selection tech-
nique based on single objective optimization(SOO) where
we determined the most relevant set of features with respect

@ Springer

to the F-measure value. In future, we would like to develop
the feature selection technique based on multi-objective
optimization(MOO) that would be able to optimize more
than one classification quality measures simultaneously. We
would also like to measure the effectiveness of the proposed
approach for the other kinds of datasets.
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